21 resultados para Atomic ratio, Maximum
Resumo:
Pure and cadmium doped tin oxide thin films were deposited on glass substrates from aqueous solution of cadmium acetate, tin (IV) chloride and sodium hydroxide by the nebulizer spray pyrolysis (NSP) technique. X-ray diffraction reveals that all films have tetragonal crystalline structure with preferential orientation along (200) plane. On application of the Scherrer formula, it is found that the maximum size of grains is 67 nm. Scanning electron microscopy shows that the grains are of rod and spherical in shape. Energy dispersive X-ray analysis reveals the average ratio of the atomic percentage of pure and Cd doped SnO2 films. The electrical resistivity is found to be 10(2) Omega cm at higher temperature (170 degrees C) and 10(3) Omega cm at lower temperature (30 degrees C). Optical band gap energy was determined from transmittance and absorbance data obtained from UV-vis spectra. Optical studies reveal that the band gap energy decreases from 3.90 eV to 3.52 eV due to the addition of Cd as dopant with different concentrations.
Resumo:
Learning from Positive and Unlabelled examples (LPU) has emerged as an important problem in data mining and information retrieval applications. Existing techniques are not ideally suited for real world scenarios where the datasets are linearly inseparable, as they either build linear classifiers or the non-linear classifiers fail to achieve the desired performance. In this work, we propose to extend maximum margin clustering ideas and present an iterative procedure to design a non-linear classifier for LPU. In particular, we build a least squares support vector classifier, suitable for handling this problem due to symmetry of its loss function. Further, we present techniques for appropriately initializing the labels of unlabelled examples and for enforcing the ratio of positive to negative examples while obtaining these labels. Experiments on real-world datasets demonstrate that the non-linear classifier designed using the proposed approach gives significantly better generalization performance than the existing relevant approaches for LPU.
Resumo:
Transparent conducting ZnO films were prepared at substrate temperature 400 degrees C with different film thicknesses by nebulizer spray pyrolysis method on glass substrates. XRD studies reveal that the films are polycrystalline in nature having hexagonal crystal structure with preferred grain orientations along (0 0 2) and (1 0 1) directions. The crystallite size increases along (0 0 2) plane with the thickness increase and attains a maximum 109 nm for 913 nm film thickness. Analysis of structural parameters indicates that the films having thickness 913 nm are found to have minimum dislocation density and strain values. The HRSEM measurements show that the surface morphology of the films also changes with film thickness. EDAX estimates the average atomic percentage ratio of Zn and O in the ZnO films. Optical studies reveal the band gap energy decrease from 3.27 to 3.14 eV with increase of film thickness. Room temperature PL spectra show the near-band-edge emission and deep-level emission due to the presence of defects in the ZnO thin films. Impedance spectroscopy analysis indicates that grain boundary resistance decreases with the increasing ammonia concentration up to 500 ppm and the maximum sensitivity is found to be 1.7 for 500 ppm of ammonia. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We present here observations on diurnal and seasonal variation of mixing ratio and delta C-13 of air CO2, from an urban station-Bangalore (BLR), India, monitored between October 2008 and December 2011. On a diurnal scale, higher mixing ratio with depleted delta C-13 of air CO2 was found for the samples collected during early morning compared to the samples collected during late afternoon. On a seasonal scale, mixing ratio was found to be higher for dry summer months (April-May) and lower for southwest monsoon months (June-July). The maximum enrichment in delta C-13 of air CO2 (-8.04 +/- 0.02aEuro degrees) was seen in October, then delta C-13 started depleting and maximum depletion (-9.31 +/- 0.07aEuro degrees) was observed during dry summer months. Immediately after that an increasing trend in delta C-13 was monitored coincidental with the advancement of southwest monsoon months and maximum enrichment was seen again in October. Although a similar pattern in seasonal variation was observed for the three consecutive years, the dry summer months of 2011 captured distinctly lower amplitude in both the mixing ratio and delta C-13 of air CO2 compared to the dry summer months of 2009 and 2010. This was explained with reduced biomass burning and increased productivity associated with prominent La Nina condition. While compared with the observations from the nearest coastal and open ocean stations-Cabo de Rama (CRI) and Seychelles (SEY), BLR being located within an urban region captured higher amplitude of seasonal variation. The average delta C-13 value of the end member source CO2 was identified based on both diurnal and seasonal scale variation. The delta C-13 value of source CO2 (-24.9 +/- 3aEuro degrees) determined based on diurnal variation was found to differ drastically from the source value (-14.6 +/- 0.7aEuro degrees) identified based on seasonal scale variation. The source CO2 identified based on diurnal variation incorporated both early morning and late afternoon sample; whereas, the source CO2 identified based on seasonal variation included only afternoon samples. Thus, it is evident from the study that sampling timing is one of the important factors while characterizing the composition of end member source CO2 for a particular station. The difference in delta C-13 value of source CO2 obtained based on both diurnal and seasonal variation might be due to possible contribution from cement industry along with fossil fuel / biomass burning as predominant sources for the station along with differential meteorological conditions prevailed.
Resumo:
The main objective of the paper is to develop a new method to estimate the maximum magnitude (M (max)) considering the regional rupture character. The proposed method has been explained in detail and examined for both intraplate and active regions. Seismotectonic data has been collected for both the regions, and seismic study area (SSA) map was generated for radii of 150, 300, and 500 km. The regional rupture character was established by considering percentage fault rupture (PFR), which is the ratio of subsurface rupture length (RLD) to total fault length (TFL). PFR is used to arrive RLD and is further used for the estimation of maximum magnitude for each seismic source. Maximum magnitude for both the regions was estimated and compared with the existing methods for determining M (max) values. The proposed method gives similar M (max) value irrespective of SSA radius and seismicity. Further seismicity parameters such as magnitude of completeness (M (c) ), ``a'' and ``aEuro parts per thousand b `` parameters and maximum observed magnitude (M (max) (obs) ) were determined for each SSA and used to estimate M (max) by considering all the existing methods. It is observed from the study that existing deterministic and probabilistic M (max) estimation methods are sensitive to SSA radius, M (c) , a and b parameters and M (max) (obs) values. However, M (max) determined from the proposed method is a function of rupture character instead of the seismicity parameters. It was also observed that intraplate region has less PFR when compared to active seismic region.
Resumo:
We use the Ramsey separated oscillatory fields technique in a 400 degrees C thermal beam of ytterbium (Yb) atoms to measure the Larmor precession frequency (and hence the magnetic field) with high precision. For the experiment, we use the strongly allowed S-1(0) P-1(1) transition at 399 nm, and choose the odd isotope Yb-171 with nuclear spin I = 1/2, so that the ground state has only two magnetic sublevels m(F) = +/- 1/2. With a magnetic field of 22.2 G and a separation of about 400 mm between the oscillatory fields, the central Ramsey fringe is at 16.64 kHz and has a width of 350 Hz. The technique can be readily adapted to a cold atomic beam, which is expected to give more than an order-of-magnitude improvement in precision. The signal-to-noise ratio is comparable to other techniques of magnetometry; therefore it should be useful for all kinds of precision measurements such as searching for a permanent electric dipole moment in atoms.