41 resultados para Aspergillus westerdijkiae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incubation of acetates of geraniol, citronellol and linalool with Aspergillus niger resulted in their hydrolysis to corresponding alcohols which were further hydroxylated to their respective 8-hydroxy derivatives. In the case of linalyl acetate, besides linalool and 8-hydroxylinalool, small amounts of geraniol and agr-terpineol were also formed. Microsomes (105 000xg sediment) prepared from induced cells of A. niger were found to convert (1-3H)citronellol to 8-hydroxy citronellol in the presence of NADPH and O2. The pH optimum for the hydroxylase was found to be 7.6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid,2,3-dihydroxybenzoic acid, and catechol, which was further degraded by ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioconversion of acyclic isoprenoids using a strain of Aspergillus niger results in hydroxylated metabolites with regio- and stereoselectivity. The organism carries out oxidation of the terminal allylic methyl group and the remote double bond in all the compounds tested (I-VII). However, these two activities seem to have preferential structural requirements. When an acyclic isoprenoid with a ketone functionality such as geranylacetone is used as the substrate, the organism also carries out the asymmetric reduction of the keto group. All the metabolites formed have been purified and characterized by conventional spectroscopic methods and quantification has been made by gas chromatographic analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonliving waste biomass consisting of Aspergillus niger attached to wheat bran was used as a biosorbent for the removal of copper and zinc from aqueous solutions. Copper and zinc uptake by the biomass obeyed Langmuir isotherms. The binding capacity of the biomass for copper was found to be higher than that for zinc. The metal uptake, expressed in milligrams per gram of biomass, was found to be a function of: the initial metal concentration (with the uptake decreasing with increasing initial concentration), the biomass loading (with the uptake decreasing with increasing biomass loading) and pH (with the uptake increasing with increasing pH in the range of 1.5 and 6.0). The metal uptake was significantly affected in the presence of a co-ion. The uptake of copper by the biomass decreased in the presence of zinc and vice versa. The decrease in metal uptake was dependent on the concentrations of metals in the two-component aqueous solutions. The effect of copper on zinc uptake was more pronounced than the effect of zinc on copper uptake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-oxidative decarboxylation of aromatic acids is a poorly understood reaction. The transformation of 2,3-dihydroxybenzoic acid to catechol in the fungal metabolism of indole is a prototype of such a reaction. 2,3-Dihydroxybenzoic acid decarboxylase (EC 4.1.1.46) which catalyzes this reaction was purified to homogeneity from anthranilate induced cultures of Aspergillus oryzae using affinity chromatography. The enzyme did not require cofactors like NAD(+), PLP, TPP or metal ions for its activity. There was no spectral evidence for the presence of enzyme bound cofactors. The preparation, which was adjudged homogeneous by the criteria of SDS-PAGE, sedimentation analysis and N-terminal analysis, was characterized for its physicochemical and kinetic parameters. The enzyme was inactivated by group-specific modifiers like diethyl pyrocarbonate (DEPC) and N-ethylmaleimide (NEM). The kinetics of inactivation by DEPC suggested the presence of a single class of essential histidine residues, the second order rate constant of inactivation for which was 12.5 M(-1) min(-1). A single class of cysteine residues was modified by NEM with a second order rate constant of 33 M(-1) min(-1). Substrate analogues protected the enzyme against inactivation by both DEPC and NEM, suggesting the Location of the essential histidine and cysteine to be at the active site of the enzyme. The incorporation of radiolabelled NEM in a differential labelling experiment was 0.73 mol per mol subunit confirming the presence of a single essential cysteine per active-site. Differentially labelled enzyme was enzymatically cleaved and the peptide bearing the label was purified and sequenced. The active-site peptide LLGLAETCK and the N-terminal sequence MLGKIALEEAFALPRFEEKT did not bear any similarity to sequences reported in the Swiss-Prot Protein Sequence Databank, a reflection probably of the unique primary structure of this novel enzyme. The sequences reported in this study will appear in the Swiss-Prot Protein Sequence Databank under the accession number P80402.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activity of glutamine synthetase fromAspergillus niger was significantly lowered under conditions of citric acid fermentation. The intracellular pH of the organism as determined by bromophenol blue dye distribution and fluorescein diacetate uptake methods was relatively constant between 6•0–6•5, when the pH of the external medium was varied between 2•3–7•0.Aspergillus niger glutamine synthetase was rapidly inactivated under acidic pH conditions and Mn2+ ions partially protected the enzyme against this inactivation. Mn2+-dependent glutamine synthetase activity was higher at acidic pH (6•0) compared to Mg2+-supported activity. While the concentration of Mg2+ required to optimally activate glutamine synthetase at pH 6•0 was very high (≥ 50 mM), Mn2+ was effective at 4 mM. Higher concentrations of Mn2+ were inhibitory. The inhibition of both Mn2+ and Mg2+-dependent reactions by citrate, 2-oxoglutarate and ATP were probably due to their ability to chelate divalent ions rather than as regulatory molecules. This suggestion was supported by the observation that a metal ion chelator, EDTA also produced similar effects. Of the end-products of the pathway, only histidine, carbamyl phosphate, AMP and ADP inhibitedAspergillus niger glutamine synthetase. The inhibitions were more pronounced when Mn2+ was the metal ion activator and greater inhibition was observed at lower pH values. These results permit us to postulate that glutamine synthesis may be markedly inhibited when the fungus is grown under conditions suitable for citric acid production and this block may result in delinking carbon and nitrogen metabolism leading to acidogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preliminary studies on the metabolism of mandelic acid by Neurospora crassa reveal the operation of a pathway for its degradation which involves benzoyl formic acid, benzaldehyde, benzoic acid, 4-hydroxybenzoic acid, and protocatechuic acid as the intermediates. This pathway is different from that followed by bacterial systems and is the same as that observed in Aspergillus niger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A versatile affinity matrix in which the ligand of interest is linked to the matrix through a connector arm containing a disulfide bond is described. It can be synthesized from any amino-substituted matrix by successive reaction with 2-imino-thio-lane, 5, 5'-dithiobis(2-nitrobenzoic acid), and a thiol derivative of the ligand of choice. The repertoire of ligands can be significantly increased by the appropriate use of avidin-biotin bridges. After adsorption of the material to be fractionated, elution can be effected by reducing the disulfide bond in the connector arm with dithiothreitol. Examples of the preparation and use of various affinity matrices based on amino-substituted Sepharose 6MB are given. One involves the immobilization of the Fab' fragment of a monoclonal antibody against Aspergillus oryzae β-galactosidase and the specific binding of that enzyme to the resulting immunoaffinity matrix. Another involves the immobilization of N-biotinyl-2-thioethylamine followed by complex formation with avidin. The resulting avidin-substituted matrix was used for the selective adsorption and subsequent recovery of mouse hybridoma cells producing anti-avidin antibodies. By further complexing the avidin-substituted matrix with appropriate biotinylated antigens, it should be possible to fractionate cells producing antibodies against a variety of antigens.