37 resultados para Ash fall
Resumo:
Polymer composites are generally filled with either fibrous or particulate materials to improve the mechanical properties. In choosing the fillers one looks for materials that are inexpensive and available in abundance, in order to realize a cost reduction also. Also, often these fibres/fillers are treated to improve the matrix adhesion and thereby mechanical properties. The present study is focussed on the influence of water ingression in such filler-modified composites and the attendant changes in the compressive properties. The changes in property effected following exposure to aqueous media and the influence interface modification has on the scenario is emphasized in the work. It is seen that for plain epoxy and fly ash filled systems the strengths are increased following exposure to aqueous media. The composites with surface-treated ash particles, on the other hand, record a drop in the values. Modulus values show are increased to varying degree in unfilled and filled systems. The study also includes a fractographic analysis of the tested samples with and without exposure to water.
Resumo:
Fly ash and silica fume are two pozzolans that have been widely used for improved concrete strength and durability. Silica fume displays a greater pozzolanic reactivity than fly ash primarily due to its finer particle size. The reactivity of fly ash can be improved by reducing its particle size distribution. This paper discusses the fresh and hardened properties of concrete made with an ultra-fine fly ash (UFFA) produced by air classification. Durability testing for chloride diffusivity, rapid chloride permeability, alkali-silica reaction (ASR), and sulfate attack was also conducted It was found that at a given workability and water content, concrete containing UFFA could be produced with only 50% of the high-range water-reducer dosage required for comparable silica fume concrete. Similar early strengths and durability measures as silica fume concrete were observed when a slightly higher dosage of UFFA was used with a small reduction (10%) in water content.
Resumo:
The impact behaviour of epoxy specimens containing 20% by volume of fly ash particles without (coded, FA20) and with surface enveloped by starch in dry (FAS20) and water-ingresses (FASM20) conditions is studied. The resulting behavioural patterns are documented and compared to the composites containing as received fly ash particles. The data on unreinforced (i.e. neat) epoxy system (designated, NE) are also included. Samples with starch covering for the fillers whether tested in dry or wet conditions (i.e. FAS20 & FASM20) showed greater absorption of energy and maximum load compared to the ones derived on composites having as received fillers tested in unexposed (dry) condition (FA20). Ductility Index, D.I. on the other hand, showed a reversal in trends; the energy absorbed was highest for NE and lowest FA20 samples. Scanning microscopic examination of the fracture features was undertaken to correlate the microstructure to impact response.
Resumo:
Mechanisms that control the volume changes behavior of foundation soils are well understood. The changes that occur in the behavior of soil due to migration of pollutants are not well understood. The extent of changes that occur in the presence of small concentration of contaminants can be predicted based on changes in the thickness of double layer and associated fabric changes. Interactions that occur with strong contaminants depends on the type of soil, type and concentration of contamination and duration of interaction etc It has been shown that different concentrations (1N and 4N) of sodium hydroxide solution causes abnormal changes on volume change behaviour of soil due to mineralogical changes. An attempt is made in this paper to stabilize contaminated soil using fly ash, after establishing its stability in alkali solutions. It was found that the effectiveness of fly ash to control the alkali induced heave increases with fly ash content incorporated into the soil. X-ray diffraction studies reveal that the mineralogical changes that occur in soil due to alkali interaction are inhibited by the presence of fly ash.
Resumo:
The properties of the soils can change drastically due to the presence of contaminants leading to several geotechnical failures founded on them. One important pollutant that can have considerable effect is the alkali released from varies industries. It is known that alkali solutions can increase the swelling of soil containing both expansive and non-expansive minerals.Many attempts to control this alkali-induced heave in soils through chemical agents were not successful. With a view to study the use of fly ash to stabilize alkali contaminated soil, the behavior of soils containing 25% and 50% of fly ash has been studied in the presence of 2N-alkali solution. Results of volume change behavior of non-expansive soil containing kaolinite clay mineral in the presence of fly ash showed that it is effective to control the alkali induced swelling in the soil. The effectiveness increases with an increase in the percentage of fly ash in soils. Detailed X-ray diffraction and SEM studies showed that the mineralogical changes that occur in soil due to alkali interaction are inhibited in the presence of fly ash.
Resumo:
Disposal of large quantities of fly ash poses a major environmental problem. To enhance its utilization, fly ash is considered for stabilizing of expansive soft soils. Improving the strength of soil, which is of major importance, depends on the pozzolanic nature of fly ash. Fly ashes with high pozzolanic reactivity are widely used but those with less pozzolanic reactivity are greatly inhibited. As the strength development in natural expansive soil considered in this investigation is very less with different percentages of fly ash, an attempt is made to increase the same by addition of lime along with fly ash. Based on several tests conducted, the optimum lime contents for fly ash and soils are 5% and 8% respectively. The strength of compacted soil with different fly ash contents of 10 to 40% with lime contents of 5% and 8% are determined after curing for different periods. The strength improvement for any soil-fly ash mixture, which is substantial with 5% of lime, is further improved with 8% of lime. The strength of soil-fly ash mixtures with any lime content increases with curing period.
Resumo:
Lime-fly ash mixtures are exploited for the manufacture of fly ash bricks finding applications in load bearing masonry. Lime-pozzolana reactions take place at a slow pace under ambient temperature conditions and hence very long curing durations are required to achieve meaningful strength values. The present investigation examines the improvements in strength development in lime-fly ash compacts through low temperature steam curing and use of additives like gypsum. Results of density-strength-moulding water content relationships, influence of lime-fly ash ratio, steam curing and role of gypsum on strength development, and characteristics of compacted lime-fly ash-gypsum bricks have been discussed. The test results reveal that (a) strength increases with increase in density irrespective of lime content, type of curing and moulding water content, (b) optimum lime-fly ash ratio yielding maximum strength is about 0.75 in the normal curing conditions, (c) 24 h of steam curing (at 80A degrees C) is sufficient to achieve nearly possible maximum strength, (d) optimum gypsum content yielding maximum compressive strength is at 2%, (e) with gypsum additive it is possible to obtain lime-fly ash bricks or blocks having sufficient strength (> 10 MPa) at 28 days of normal wet burlap curing.
Resumo:
A number of spectral analysis of surface waves (SASW) tests were performed on asphaltic road pavements by dropping a metallic 6.5 kg sphere, from a height (H) ranging from 1 to 3 m. Various combinations of source to first receiver distance (S) and receiver spacing (X) were employed. By increasing the height of the fall of the dropping mass, the maximum wavelength (lambda(max)), up to which the shear wave velocity profile can be predicted with the usage of the SASW measurements, was found to increase continuously. The height of fall of the dropping mass also seems to affect the admissible range of the wavelength for given combinations of X and S. Irrespective of different chosen combinations of S, X and H, a unique combined dispersion curve was generated in all the cases for a given pavement site as long as the threshold minimum value of the coherence function is greater than 0.90.