456 resultados para Aromatic carbon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, wave propagation in multi-walled carbon nanotubes (MWNTs) are studied by modeling them as continuum multiple shell coupled through van der Waals force of interaction. The displacements, namely, axial, radial and circumferential displacements vary along the circumferential direction. The wave propagation are simulated using the wavelet based spectral finite element (WSFE) method. This technique involves Daubechies scaling function approximation in time and spectral element approach. The WSFE Method allows the study of wave properties in both time and frequency domains. This is in contrast to the conventional Fourier transform based analysis which are restricted to frequency domain analysis. Here, first, the wavenumbers and wave speeds of carbon nanotubes (CNTs) are Studied to obtain the characteristics of the waves. These group speeds have been compared with those reported in literature. Next, the natural frequencies of a single-walled carbon nanotube (SWNT) are studied for different values of the radius. The frequencies of the first five modes vary linearly with the radius of the SWNT. Finally, the time domain responses are simulated for SWNT and three-walled carbon nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluctuation of field emission current from carbon nanotubes (CNTs) poses certain difficulties for their use in nanobiomedical X-ray devices and imaging probes. This problem arises due to deformation of the CNTs due to electrodynamic force field and electron-phonon interaction. It is of great importance to have precise control of emitted electron beams very near the CNT tips. In this paper, a new array configuration with stacked array of CNTs is analysed and it is shown that the current density distribution is greatly localised at the middle of the array, that the scatter due to electrodynamic force field is minimised and that the temperature transients are much smaller compared to those in an array with random height distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

$CO_2^{-}$ ions have been detected in the gas phase and measured by a mass spectrometer with a flight time of 30 µs in the positive column of carbondioxide glow discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady-state kinetic constants for the catalysis of CO2 hydration by the sulfonamide-resistant and testosterone-induced carbonic anhydrase from the liver of the male rat has been determined by stopped-flow spectrophotometry. The turnover number was 2.6 ± 0.6 × 103 s− at 25 °C, and was invariant with pH ranging from 6.2 to 8.2 within experimental error. The Km at 25 °C was 5 ± 1 mImage , and was also pH independent. These data are in quantitative agreement with earlier findings of pH-independent CO2 hydration activity for the mammalian skeletal muscle carbonic anhydrase isozyme III. The turnover numbers for higher-activity isozymes I and II are strongly pH dependent in this pH range. Thus, the kinetic status of the male rat liver enzyme is that of carbonic anhydrase III. This finding is consistent with preliminary structural and immunologic data from other laboratories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray and He(II) ultraviolet photoelectron spectroscopy studies of the interaction of CO with oxygen on potassium-, caesium- and barium-covered Ag surfaces have shown the formation of carbonate at 300 K. While on a caesium-covered surface only carbonate formation takes place, on the potassium- and barium-covered surfaces molecularly chemisorbed CO is also formed. The variation of the surface concentrations of carbon and oxygen with temperature has been examined and a reaction sequence for the interaction of CO with adsorbed oxygen on potassium-, caesium- and barium-covered Ag surfaces is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing concentrations of atmospheric CO2 decrease stomatal conductance of plants and thus suppress canopy transpiration. The climate response to this CO2-physiological forcing is investigated using the Community Atmosphere Model version 3.1 coupled to Community Land Model version 3.0. In response to the physiological effect of doubling CO2, simulations show a decrease in canopy transpiration of 8%, a mean warming of 0.1K over the land surface, and negligible changes in the hydrological cycle. These climate responses are much smaller than what were found in previous modeling studies. This is largely a result of unrealistic partitioning of evapotranspiration in our model control simulation with a greatly underestimated contribution from canopy transpiration and overestimated contributions from canopy and soil evaporation. This study highlights the importance of a realistic simulation of the hydrological cycle, especially the individual components of evapotranspiration, in reducing the uncertainty in our estimation of climatic response to CO2-physiological forcing. Citation: Cao, L., G. Bala, K. Caldeira, R. Nemani, and G.Ban-Weiss (2009), Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XPS studies of the interaction of carbon monoxide with surfaces of Fe, Co and Ni indicate that at 300 K, the disproportionation reaction is prominent up to exposures of 103 L giving rise to high surface concentrations of carbon. At higher exposures and higher temperatures, dissociation of carbon monoxide accompanied by the formation of surface oxide layers becomes more prominent. In the case of copper, disproportionation is prominent up to 104 L even at 500 K followed by dissociation at higher exposures. These results are also supported by Auger spectroscopic studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable temperature i.r. spectroscopic studies of weak pi-donor-pi-acceptor complexes in the crystalline state indicate that the complexes undergo order-disorder transitions, the disorder being caused by molecular motion. Thermodynamic data on the phase transitions along with the spectral data suggest that the high-temperature crystalline forms of the complexes are likely to be pseudoplastic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the molecular mechanism of non-oxidative decarboxylation of aromatic acids observed in microbial systems, 2,3 dihydroxybenzoic acid (DHBA) decarboxylase from Image Image was purified to homogeneity by affinity chromatography. The enzyme (Mr 120 kDa) had four identical subunits (28 kDa each) and was specific for DHBA. It had a pH optimum of 5.2 and Km was 0.34mM. The decarboxylation did not require any cofactors, nor did the enzyme had any pyruvoyl group at the active site. The carboxyl group and hydroxyl group in the Image -position were required for activity. The preliminary spectroscopic properties of the enzyme are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of nickel(I1) and copper(I1) complexes of 4,9-dimethy1-5,8-diazadodeca-4,8diene-2,1 ldione, Ni(baen) and 4,6,9-trimethyl-5, 8diazadodeca-4,8-diene-2,ll-dione, Ni(bapn), with arene diazonium chlorides in buffered solutions of methanol yielded metal derivatives of glyoxaliminearylhydrazones. This typical electrophilic addition at the 3-carbon of the complex occurs owing to the pseudo aromatic behaviour of the chelate ring. A mechanism which predicts the attack of the diazonium cation through the coordination shell of the metal is well documented from the available experimental evidences. The chemical reactivity of a few complexes with a single residual non-substituted y-carbon is reasonably manifested by their reaction with phenyl isocyanate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of alveolar carbon monoxide (CO) presents a facile technique to estimate the lifespan, L, of red blood cells (RBCs) in vivo. Several recent studies employ this technique and calculate L (in days) using the expression, L = 13.8 (Hb)/P-CO(end), where (Hb) is the concentration (in g/dL) of hemoglobin in blood, and P-CO(end) is the endogenous production of CO (in ppm). Implicit in this calculation is the assumption that the fraction, f, of endogenous CO production due to RBC turnover is a constant equal to 0.7, which yields the expected RBC lifespan, L approximate to 120 days, in normal controls. In anemic patients, however, enhanced RBC turnover may increase f substantially above 0.7. The above expression then overestimates L. Here, we deriv an alternative tive expression, L = 3390[Hb]/322P(CO (end)-110, that accounts explicitly for the dependence of f on the rate of RBC turnover and thereby provides more accurate estimates of L without requiring additional measurements. Using the latter expression, we recalculate L from recent measurements on hepatitis C virus infected patients undergoing treatment with ribavirin. We find that our estimates of L in these patients (39 +/- 13 days) are significantly lower than current estimates (46 +/- 14 days), indicating that ribavirin affects RBC survival more severely than expected from current studies. Our expression for L is simple to employ in a clinical setting and would render the broadly applicable technique of alveolar CO measurement for the estimation of RBC lifespan more accurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ Raman experiments together with transport measurements have been carried out in single-walled carbon nanotubes as a function of electrochemical top gate voltage (Vg). We have used the green laser (EL=2.41 eV), where the semiconducting nanotubes of diameter ~1.4 nm are in resonance condition. In semiconducting nanotubes, the G−- and G+-mode frequencies increase by ~10 cm−1 for hole doping, the frequency shift of the G− mode is larger compared to the G+ mode at the same gate voltage. However, for electron doping the shifts are much smaller: G− upshifts by only ~2 cm−1 whereas the G+ does not shift. The transport measurements are used to quantify the Fermi-energy shift (EF) as a function of the gate voltage. The electron-hole asymmetry in G− and G+ modes is quantitatively explained using nonadiabatic effects together with lattice relaxation contribution. The electron-phonon coupling matrix elements of transverse-optic (G−) and longitudinal-optic (G+) modes explain why the G− mode is more blueshifted compared to the G+ mode at the same Vg. The D and 2D bands have different doping dependence compared to the G+ and G− bands. There is a large downshift in the frequency of the 2D band (~18 cm−1) and D (~10 cm−1) band for electron doping, whereas the 2D band remains constant for the hole doping but D upshifts by ~8 cm−1. The doping dependence of the overtone of the G bands (2G bands) shows behavior similar to the dependence of the G+ and G− bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered LiNi1/3Co1/3Mn1/3O2, which is isostructural to LiCoO2, is considered as a potential cathode material. A layer of carbon coated on the particles improves the electrode performance, Which is attributed to an increase of the grain connectivity and also to protection of metal oxide from chemical reaction. The present work involves in situ synthesis of carbon-coated submicrometer-sized particles of LiNi1/3Co1/3Mn1/3O2 in an inverse microemulsion medium in the presence of glucose. The precursor obtained from the reaction is heated in air at 900 degrees C for 6 h to get crystalline LiNi1/3Co1/3Mn1/3O2. The carbon coating is found to impart porosity as well as higher surface area in relation to bare samples of the compound. The electrochemical characterization studies provide that carbon-coated LiNi1/3Co1/3Mn1/3O2 samples exhibit improved rate capability and cycling performance. The carbon coatings are shown to suppress the capacity fade, which is normally observed for the bare compound. Impedance spectroscopy data provide additional evidence for the beneficial effect of a carbon coating on LiNi1/3Co1/3Mn1/3O2 particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of < 10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.