94 resultados para Aniline methylation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the results of the preparation and characterization of self-doped conducting copolymers of aniline and toluidine with m-aminobenzene sulfonic acid. The copolymers have an intrinsic acid group that is capable of doping polyaniline. Spectroscopic, morphological, and electrical conductivity studies have provided insight into the structural and electronic properties of the copolymers. The differences in the properties of polyaniline and polytoluidine due to the sulfonic acid ring substituent on the phenyl ring are discussed. The scanning electron micrographs of the copolymers reveal regions of sharp-edged, needle-shaped structures, whereas the X-ray diffraction patterns show that the copolymers are relatively more crystalline in nature. (C) 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copolymers of aniline and ortholmeta-amino benzoic acid were synthesized by chemical polymerization using an inverse emulsion pathway. The copolymers are soluble in organic solvents, and the solubility increases with the amino benzoic acid content in the feed. The reaction conditions were optimized with emphasis on high yield and relatively good conductivity (2.5 X 10(-1) S cm(-1)). The copolymers were characterized by a number of techniques including UV-vis, FT-IR, FT-Raman, EPR and NNM spectroscopy, thermal analysis, SEM and conductivity. The influence of the carboxylic acid group ring substituent on the copolymers is investigated. The spectral studies reveal that the amino benzoic acid groups restrict the conjugation along the polymer chain. The SEM micrographs of the copolymers reveal regions of amorphous and crystalline domain. Thermal studies indicate a marginally higher thermal stability for poly(aniline-co-m-amino benzoic acid) compared to poly(aniline-co-o-amino benzoic acid). (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of nanoparticles of Ni-Zn ferrite dispersed in aniline formaldehyde copolymer using a room temperature route and the effect of heat treatment on these samples were studied using XRD, FTIR spectroscopy, Fe-57 Mossbauer spectroscopy and TEM microscopy. The results show the formation of nanosized particles of Ni-Zn ferrite in the polymer matrix at room temperature. On pyrolysis, the Ni-Zn ferrite phase persists up to 500 degreesC. However, heating of composites to 700 degreesC results in the partial reduction of the spinet ferrite leading to the formation of Ni-Fe alloy under ambient conditions and complete reduction of the alloy on heating in inert atmosphere. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence quenching of biologically active carboxamide namely (E)-2-(4-chlorobenzylideneamino)-N-(2-chlorophenyl)-4,5,6,7-tetrahydrobe nzo[b]thiophene-3-carboxamide [ECNCTTC] by aniline and carbon tetrachloride (CCl(4)) quenchers in different solvents using steady state method and time resolved method using only one solvent has been carried out at room temperature to understand the role of quenching mechanisms. The Stern-Volmer plot has been found to be linear for all the solvents studied. The probability of quenching per encounter p (p') was determined in all the solvents and was found to be less than unity. Further, from the studies of rate parameters and life time measurements in n-heptane and cyclohexane with aniline and carbon tetrachloride as quenchers have been shown that, the phenomenon of quenching is generally governed by the well-known Stern-Volmer (S-V) plot. The activation energy E(a) (or E(a)') of quenching was determined using the literature values of activation energy of diffusion E(d) and the experimentally determined values of p (or p'). It has been found that, the activation energy E(a) (E(a)') is greater than the activation energy for diffusion E(d) in all solvents. Hence, from the magnitudes of E(a) (or E(a)') as well as p (or p') infer that, the quenching mechanism is not solely due to the material diffusion, but there is also contribution from the activation energy. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluorescence quenching studies of carboxamide namely (E)-N-(3-Chlorophenyl)-2-(3,4,5-trimethoxybenzylideneamino)-4,5,6,7 tetrahydrobenzob]thiophene-3-carboxamide ENCTTTC] by aniline and carbon tetrachloride in six different solvents namely toluene, cyclohexane, n-hexane, n-heptane, n-decane and n-pentane have been carried out at room temperature with a view to understand the quenching mechanisms. The Stern-Volmer (S-V) plots have been found to be nonlinear with a positive deviation for all the solvents studied. In order to interpret these results we have invoked the ground state complex formation and sphere of action static quenching models. Using these models various quenching rate parameters have been determined. The magnitudes of these parameters suggest that sphere of action static quenching model agrees well with the experimental results. Hence the positive deviation is attributed to the static and dynamic quenching. Further, with the use of Finite Sink approximation model, it was possible to check these bimolecular reactions as diffusion-limited and to estimate independently distance parameter R' and mutual diffusion coefficient D. Finally an effort has been made to correlate the values of R' and D with the values of the encounter distance R and the mutual coefficient D determined using the Edward's empirical relation and Stokes Einstein relation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helicobacter pylori is an important human pathogen and one of the most successful chronic colonizers of the human body. H. pylori uses diverse mechanisms to modulate its interaction with the host in order to promote chronic infection and overcome host immune response. Restriction-modification genes are a major part of strain-specific genes present in H. pylori. The role of N-6 -adenine methylation in bacterial gene regulation and virulence is well established but not much is known about the effect of C-5 -cytosine methylation on gene expression in prokaryotes. In this study, it was observed by microarray analysis and RT-PCR, that deletion of an orphan C-5 -cytosine methyltransferase, hpyAVIBM in H. pylori strains AM5and SS1 has a significant effect on the expression of number of genes belonging to motility, adhesion and virulence. AM Delta DhpyAVIBM mutant strain has a different LPS profile and is able to induce high IL-8 production compared to wild-type. hpyAVIBM from strain 26695 is able to complement mutant SS1 and AM5 strains. This study highlights a possible significance of cytosine methylation in the physiology of H. pylori.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma (GBM) is the most common, malignant adult primary tumor with dismal patient survival, yet the molecular determinants of patient survival are poorly characterized. Global methylation profile of GBM samples (our cohort; n = 44) using high-resolution methylation microarrays was carried out. Cox regression analysis identified a 9-gene methylation signature that predicted survival in GBM patients. A risk-score derived from methylation signature predicted survival in univariate analysis in our and The Cancer Genome Atlas (TCGA) cohort. Multivariate analysis identified methylation risk score as an independent survival predictor in TCGA cohort. Methylation risk score stratified the patients into low-risk and high-risk groups with significant survival difference. Network analysis revealed an activated NF-kappa B pathway association with high-risk group. NF-kappa B inhibition reversed glioma chemoresistance, and RNA interference studies identified interleukin-6 and intercellular adhesion molecule-1 as key NF-kappa B targets in imparting chemoresistance. Promoter hypermethylation of neuronal pentraxin II (NPTX2), a risky methylated gene, was confirmed by bisulfite sequencing in GBMs. GBMs and glioma cell lines had low levels of NPTX2 transcripts, which could be reversed upon methylation inhibitor treatment. NPTX2 overexpression induced apoptosis, inhibited proliferation and anchorage-independent growth, and rendered glioma cells chemosensitive. Furthermore, NPTX2 repressed NF-kappa B activity by inhibiting AKT through a p53-PTEN-dependent pathway, thus explaining the hypermethylation and downregulation of NPTX2 in NF-kappa B-activated high-risk GBMs. Taken together, a 9-gene methylation signature was identified as an independent GBM prognosticator and could be used for GBM risk stratification. Prosurvival NF-kappa B pathway activation characterized high-risk patients with poor prognosis, indicating it to be a therapeutic target. (C) 2013 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma (GBM) is the most aggressive type of brain tumor and shows very poor prognosis. Here, using genome-wide methylation analysis, we show that G-CIMP+ and G-CIMP-subtypes enrich distinct classes of biological processes. One of the hypermethylated genes in GBM, ULK2, an upstream autophagy inducer, was found to be down-regulated in GBM. Promoter hypermethylation of ULK2 was confirmed by bisulfite sequencing. GBM and glioma cell lines had low levels of ULK2 transcripts, which could be reversed upon methylation inhibitor treatment. ULK2 promoter methylation and transcript levels showed significant negative correlation. Ectopic overexpression of ULK2-induced autophagy, which further enhanced upon nutrient starvation or temozolomide chemotherapy. ULK2 also inhibited the growth of glioma cells, which required autophagy induction as kinase mutant of ULK2 failed to induce autophagy and inhibit growth. Furthermore, ULK2 induced autophagy and inhibited growth in Ras-transformed immortalized Baby Mouse Kidney (iBMK) ATG5(+/+) but not in autophagy-deficient ATG5(-/-) cells. Growth inhibition due to ULK2 induced high levels of autophagy under starvation or chemotherapy utilized apoptotic cell death but not at low levels of autophagy. Growth inhibition by ULK2 also appears to involve catalase degradation and reactive oxygen species generation. ULK2 overexpression inhibited anchorage independent growth, inhibited astrocyte transformation in vitro and tumor growth in vivo. Of all autophagy genes, we found ULK2 and its homologue ULK1 were only down-regulated in all grades of glioma. Thus these results altogether suggest that inhibition of autophagy by ULK1/2 down-regulation is essential for glioma development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH) 1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Methods. Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Results. Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine-phosphate-guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Conclusions. Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation-specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: DNA methylation and its perturbations are an established attribute to a wide spectrum of phenotypic variations and disease conditions. Indian traditional system practices personalized medicine through indigenous concept of distinctly descriptive physiological, psychological and anatomical features known as prakriti. Here we attempted to establish DNA methylation differences in these three prakriti phenotypes. Methods: Following structured and objective measurement of 3416 subjects, whole blood DNA of 147 healthy male individuals belonging to defined prakriti (Vata, Pitta and Kapha) between the age group of 20-30years were subjected to methylated DNA immunoprecipitation (MeDIP) and microarray analysis. After data analysis, prakriti specific signatures were validated through bisulfite DNA sequencing. Results: Differentially methylated regions in CpG islands and shores were significantly enriched in promoters/UTRs and gene body regions. Phenotypes characterized by higher metabolism (Pitta prakriti) in individuals showed distinct promoter (34) and gene body methylation (204), followed by Vata prakriti which correlates to motion showed DNA methylation in 52 promoters and 139 CpG islands and finally individuals with structural attributes (Kapha prakriti) with 23 and 19 promoters and CpG islands respectively. Bisulfite DNA sequencing of prakriti specific multiple CpG sites in promoters and 5'-UTR such as; LHX1 (Vata prakriti), SOX11 (Pitta prakriti) and CDH22 (Kapha prakriti) were validated. Kapha prakriti specific CDH22 5'-UTR CpG methylation was also found to be associated with higher body mass index (BMI). Conclusion: Differential DNA methylation signatures in three distinct prakriti phenotypes demonstrate the epigenetic basis of Indian traditional human classification which may have relevance to personalized medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first stereoselective total synthesis of (+/-)-allo-cedrol 20, an enantiomer of khusiol and a complex sesquiterpene having a novel tricyclo[5.2.2.0(1,5)]undecane framework, is reported from 8-methoxytricyclo[6.2.2.0(1,6)]dodec-6-en-9-one 6c. The methodology involves preparation of 9-methoxytricyclo[7.2.1.0(1,6)]dodec-6-en-8-one 12 from 6c and its conversion through the compounds 8-benzyloxy-7,7-dimethyl-9-methoxytricyclo[7.2.1.0(1,6)]dodec-5-ene 38, 7-benzyloxy-8-methoxy-2,6,6-trimethyltricyclo[6.2.1.0(1,5)]undecane 48 into 8-methoxy-2,6,6-trimethyltricyclo[6.2.1.0(1,5)]undecan-7-one 49. Wittig reaction of 49 affords the olefin 50 which has been smoothly rearranged into khusione 51. Metal-ammonia reduction of khusione under specific conditions affords (+/-)-allo-cedrol. Thus, bridgehead substitution of a methoxy group by a methyl group is the key reaction in this synthesis. In an alternative strategy, attempted conversion of 8-methoxy-2-methyltricyclo[6.2.1.0(1,5)]undec-5-en-7-one 16 into khusione 37 results in an inseparable mixture of the isomers. A notable observation in this synthesis is the unusual formation of a gamma-alkylated product 27 during Woodward methylation of 16.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated structural transitions in Poly(dG-dC) and Poly(dG-Me5dC) in order to understand the exact role of cations in stabilizing left-handed helical structures in specific sequences andthe biological role, if any, of these structures. From a novel temperature dependent transition it has been shown that a minor fluctuation in Na+ concentration at ambient temperature can bring about Β to Ζ transition. Forthe first time, wehave observed a novel double transition in poly(dG-Me5dC) as the Na+ concentration is gradually increased. This suggests that a minor fluctuation in Na+ concentration in conjunction with methylation may transform small stretches of CG sequences from one conformational state to another. These stretches could probably serve as sites for regulation. Supercoiled formV DNA reconstituted from pBR322 and pßG plasmids have been studied as model systems, in order to understand the nature and role of left-handed helical conformation in natural sequences. A large portion of DNA in form V, obtained by reannealing the two complementary singlestranded circles is forced to adopt left-handed double helical structure due to topological constraints (Lk = 0). Binding studies with Z-DNA specific antibody and spectroscopic studies confirm the presence of left-handed Z-structure in the pßG and pßR322 form V DNA. Cobalt hexamine chloride, which induces Z-form in Poly(dG-dC) stabilizes the Z-conformation in form V DNA even in the non-alternating purine-pyrimidine sequences. A reverse effect is observed with ethidium bromide. Interestingly, both topoisomerase I and II (from wheat germ) act effectively on form V DNA to give rise to a species having an electrophoretic mobility on agarose gel similar to that of open circular (form II) DNA. Whether this molecule is formed as a result of the left-handed helical segments of form V DNA undergoing a transition to the right-handed B-form during the topoisomerase action remains to be solved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The infrared spectra of symmetric N,N′-dimethylthiourea (s-DMTU) and its N-deuterated (s-DMTU-d2) species have been measured. The fundamental frequencies have been assigned by comparison with the assignments in structurally related molecules and the infrared band shifts on N-deuteration, S-methylation, available Raman data and with the aid of theoretical band assignments from normal coordinate treatments for s-DMTU-d0 and -d2. A force field is derived for s-DMTU by transferring the force constants chiefly from N-methylthiourea and the subsequent refinement of the force constants by a least squares procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the systematic study of amine … LiCl [amines = NH3, CH3NH2, (CH3)2NH] complexes the possibility of an ion-pair structure and the effect of methylation on the stabilization energy is investigated. ΔEis evaluated by the SCF/4-31G method and augmented by the approximate dispersion energy calculated perturbationally. The interaction energy decreases with the increasing number of methyl groups in the amine. The dispersion energy plays a negligible role in the stabilization of complexes. None of the systems studied are ion pairs; their Li bonds are of a so-called molecular type. Due to the divergence of the multipole expansion, the attempt to correct the 4-31G stabilization energies via the electrostatic energy fails. The relative order of the ΔE in the series of complexes is verified instead in the extended basis set calculation. The lithium bonds are compared with their H-bonded analogues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ricinus communis agglutinin was subjected to various chemical treatments and the effect on its hemagglutinating and saccharide-binding properties was studied. Acetylation, succinylation and citraconylation led to a complete loss in the activity of the agglutinin, whereas reductive methylation had no effect on the activity, showing that charged amino groups were involved in the hemagglutinating and saccharide-binding activity of Ricinus agglutinin. Modification of tryptophyl, arginyl and carboxyl-group-containing residues did not lead to any loss in the activity of the agglutinin. Acetylation of tyrosyl groups with N-acetylimidazole strongly reduced the hemagglutinating and saccharide-binding property of Ricinus agglutinin. The loss in activity was restored on deacetylation of the tyrosyl groups. Modification of tyrosyl residues also led to a change in the immunological properties of the agglutinin. The initial rate of modification of tyrosyl and amino groups and the concomitant loss of activity was reduced in the presence of lactose.