23 resultados para Ambiguous Situations
Resumo:
Although the applications of Auger electron spectroscopy in surface analysis have by far outweighed its use as a tool to investigate electron states of solids and surfaces, there are a variety of situations where Auger spectroscopy provides unique information. Apart from the chemical shifts, Auger intensities are useful in determining the number of d-electron states in transition metal systems. Auger spectroscopy is a good probe to investigate the surface oxidation of metals. In addition to the intra-atomic Auger transitions, inter-atomic transitions observed in oxides and other systems reveal the nature of electron states of surfaces. Charge-transfer and hybridization effects in alloys are also usefully studied by Auger spectroscopy. Auger electron spectroscopy has not been a popular technique to investigate adsorption of molecules on surfaces, but the technique is useful to obtain fingerprints of surface species.
Resumo:
Better operational control of water networks can help reduce leakage, maintain pressure, and control flow. Proportional integral derivative (PID) controllers, with proper fine-tuning, can help water utility operators achieve targets faster without creating undue transients. The authors compared three tuning methods, in different test situations, involving flow and level control to different reservoirs. Although target values were reached with all three tuning methods, the methods’ performances varied significantly. The lowest performer among the three was the method most widely used in the industry—standard tuning by the Ziegler-Nichols method. Achieving better results was offline tuning by genetic algorithms. Achieving the best control, though, was a fuzzy logic–based online tuning approach—the FZPID controller. The FZPID controller had fewer overshoots and took significantly less time to tune the gains for each problem. This new tuning approach for PID controllers can be applied to a variety of problems and can increase the performance of water networks of any size and structure
Resumo:
A recent theoretical model developed by Imparato et al. Phys of the experimentally measured heat and work effects produced by the thermal fluctuations of single micron-sized polystyrene beads in stationary and moving optical traps has proved to be quite successful in rationalizing the observed experimental data. The model, based on the overdamped Brownian dynamics of a particle in a harmonic potential that moves at a constant speed under a time-dependent force, is used to obtain an approximate expression for the distribution of the heat dissipated by the particle at long times. In this paper, we generalize the above model to consider particle dynamics in the presence of colored noise, without passing to the overdamped limit, as a way of modeling experimental situations in which the fluctuations of the medium exhibit long-lived temporal correlations, of the kind characteristic of polymeric solutions, for instance, or of similar viscoelastic fluids. Although we have not been able to find an expression for the heat distribution itself, we do obtain exact expressions for its mean and variance, both for the static and for the moving trap cases. These moments are valid for arbitrary times and they also hold in the inertial regime, but they reduce exactly to the results of Imparato et al. in appropriate limits. DOI: 10.1103/PhysRevE.80.011118 PACS.
Resumo:
The scalar coupled proton NMR spectra of many organic molecules possessing more than one phenyl ring are generally complex due to degeneracy of transitions arising from the closely resonating protons, in addition to several short- and long- range couplings experienced by each proton. Analogous situations are generally encountered in derivatives of halogenated benzanilides. Extraction of information from such spectra is challenging and demands the differentiation of spectrum pertaining to each phenyl ring and the simplification of their spectral complexity. The present study employs the blend of independent spin system filtering and the spin-state selective detection of single quantum (SO) transitions by the two-dimensional multiple quantum (MQ) methodology in achieving this goal. The precise values of the scalar couplings of very small magnitudes have been derived by double quantum resolved experiments. The experiments also provide the relative signs of heteronuclear couplings. Studies on four isomers of dilhalogenated benzanilides are reported in this work.
Resumo:
The decentralized power is characterised by generation of power nearer to the demand centers, focusing mainly on meeting local energy needs. A decentralized power system can function either in the presence of grid, where it can feed the surplus power generated to the grid, or as an independent/stand-alone isolated system exclusively meeting the local demands of remote locations. Further, decentralized power is also classified on the basis of type of energy resources used-non-renewable and renewable. These classifications along with a plethora of technological alternatives have made the whole prioritization process of decentralized power quite complicated for decision making. There is abundant literature, which has discussed various approaches that have been used to support decision making under such complex situations. We envisage that summarizing such literature and coming out with a review paper would greatly help the policy/decision makers and researchers in arriving at effective solutions. With such a felt need 102 articles were reviewed and features of several technological alternatives available for decentralized power, the studies on modeling and analysis of economic, environmental and technological asibilities of both grid-connected (GC) and stand-alone (SA) systems as decentralized power options are presented. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In plotting the variation of frequencies with geometric parameters such as side ratio, skew angle, thickness taper, etc. in detailed studies of the vibration characteristics of plates, situations are encountered such as crossing of the frequency curves or the tendency of these curves to come close together and veer away from each other. These have been generally referred to as “frequency crossings” and “transitions” respectively. The latter may preferably be referred to as “quasi-degeneracies”. In the literature there appears to be some ambiguity in the analysis and interpretation of these features. In this paper, a clarification of some of these questions as regards rectangular and skew plates is presented by making use of concepts from physics dealing with molecular vibrations.
Resumo:
This paper considers the on-line identification of a non-linear system in terms of a Hammerstein model, with a zero-memory non-linear gain followed by a linear system. The linear part is represented by a Laguerre expansion of its impulse response and the non-linear part by a polynomial. The identification procedure involves determination of the coefficients of the Laguerre expansion of correlation functions and an iterative adjustment of the parameters of the non-linear gain by gradient methods. The method is applicable to situations involving a wide class of input signals. Even in the presence of additive correlated noise, satisfactory performance is achieved with the variance of the error converging to a value close to the variance of the noise. Digital computer simulation establishes the practicability of the scheme in different situations.
Resumo:
The possibility or the impossibility of separating the particle and the electrode interactions is discussed in a wider context of the effects due to any two interaction potentials on the equation of state. The involved nature of the pressure dependence on two individually definable forces is illustrated through the Percus Yevick results for the adhesive hard spheres. An alternative form of the adsorption isotherm is given to bring home the intimate relationship between the actual equation of state and the free energy of adsorption. Thermodynamic consequences of congruence with respect to E (or q) as reflected through the linear plots of q (or E) vs. θ are well known. Mathematical consequences of simultaneous congruence have been pointed out recently. In this paper, the physical nature of congruence hypothesis is revealed. In passing "the pseudo-congruence" is also discussed. It is emphasised that the problem is no less ambiguous with regard to modelling the particle/particle interaction. The ad hoc nature of our dependence of the available equations of state is emphasised through a discussion on the HFL theory. Finally, a heuristic method for modelling ΔG mathematically-incorporating its behaviour at saturation coverages-is advanced. The more interesting aspects of this approach, which generalises almost all isotherms hitherto known, are sketched.