104 resultados para Algebraic triangulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lamb-wave-based damage detection methods using the triangulation technique are not suitable for handling structures with complex shapes and discontinuities as the parametric/analytical representation of these structures is very difficult. The geodesic concept is used along with the triangulation technique to overcome the above problem. The present work is based on the fundamental fact that a wave takes the minimum energy path to travel between two points on any multiply connected surface and this reduces to the shortest distance path or geodesic. The geodesics are computed on the meshed surface of the structure using the fast marching method. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrices are compared and their difference gives the time information about the reflection of waves from the damage. A wavelet transform is used to extract the arrival time information of the wave scattered by the damage from the acquired Lamb wave signals. The computed geodesics and time information are used in the ellipse algorithm of triangulation formulation to locate the loci of possible damage location points for each actuator-sensor pair. The results obtained for all actuator-sensor pairs are combined and the intersection of multiple loci gives the damage location result. Experiments were conducted in aluminum and composite plate specimens to validate this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csiszar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner bases method to compute an implicit representation of minimum KL-divergence models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For d >= 2, Walkup's class K (d) consists of the d-dimensional simplicial complexes all whose vertex-links are stacked (d - 1)-spheres. Kalai showed that for d >= 4, all connected members of K (d) are obtained from stacked d-spheres by finitely many elementary handle additions. According to a result of Walkup, the face vector of any triangulated 4-manifold X with Euler characteristic chi satisfies f(1) >= 5f(0) - 15/2 chi, with equality only for X is an element of K(4). Kuhnel observed that this implies f(0)(f(0) - 11) >= -15 chi, with equality only for 2-neighborly members of K(4). Kuhnel also asked if there is a triangulated 4-manifold with f(0) = 15, chi = -4 (attaining equality in his lower bound). In this paper, guided by Kalai's theorem, we show that indeed there is such a triangulation. It triangulates the connected sum of three copies of the twisted sphere product S-3 (sic) S-1. Because of Kuhnel's inequality, the given triangulation of this manifold is a vertex-minimal triangulation. By a recent result of Effenberger, the triangulation constructed here is tight. Apart from the neighborly 2-manifolds and the infinite family of (2d + 3)-vertex sphere products Sd-1 X S-1 (twisted for d odd), only fourteen tight triangulated manifolds were known so far. The present construction yields a new member of this sporadic family. We also present a self-contained proof of Kalai's result. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss three methods to correct spherical aberration for a point to point imaging system. First, results obtained using Fermat's principle and the ray tracing method are described briefly. Next, we obtain solutions using Lie algebraic techniques. Even though one cannot always obtain analytical results using this method, it is often more powerful than the first method. The result obtained with this approach is compared and found to agree with the exact result of the first method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions.We use the force and moment transformation matrices separately,and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation has been applied to a class of Stewart platform manipulators. We obtain multi-parameter families of isotropic manipulator analytically. In addition to computing the isotropic configurations of an existing manipulator,we demonstrate a procedure for designing the manipulator for isotropy at a given configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major challenge in wireless communications is overcoming the deleterious effects of fading, a phenomenon largely responsible for the seemingly inevitable dropped call. Multiple-antennas communication systems, commonly referred to as MIMO systems, employ multiple antennas at both transmitter and receiver, thereby creating a multitude of signalling pathways between transmitter and receiver. These multiple pathways give the signal a diversity advantage with which to combat fading. Apart from helping overcome the effects of fading, MIMO systems can also be shown to provide a manyfold increase in the amount of information that can be transmitted from transmitter to receiver. Not surprisingly,MIMO has played, and continues to play, a key role in the advancement of wireless communication.Space-time codes are a reference to a signalling format in which information about the message is dispersed across both the spatial (or antenna) and time dimension. Algebraic techniques drawing from algebraic structures such as rings, fields and algebras, have been extensively employed in the construction of optimal space-time codes that enable the potential of MIMO communication to be realized, some of which have found their way into the IEEE wireless communication standards. In this tutorial article, reflecting the authors’interests in this area, we survey some of these techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brehm and Kuhnel proved that if M-d is a combinatorial d-manifold with 3d/2 + 3 vertices and \ M-d \ is not homeomorphic to Sd then the combinatorial Morse number of M-d is three and hence d is an element of {0, 2, 4, 8, 16} and \ M-d \ is a manifold like a projective plane in the sense of Eells and Kuiper. We discuss the existence and uniqueness of such combinatorial manifolds. We also present the following result: ''Let M-n(d) be a combinatorial d-manifold with n vertices. M-n(d) satisfies complementarity if and only if d is an element of {0, 2, 4, 8, 16} with n = 3d/2 + 3 and \ M-n(d) \ is a manifold like a projective plane''.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The symmetric group acts on the Cartesian product (S (2)) (d) by coordinate permutation, and the quotient space is homeomorphic to the complex projective space a'',P (d) . We used the case d=2 of this fact to construct a 10-vertex triangulation of a'',P (2) earlier. In this paper, we have constructed a 124-vertex simplicial subdivision of the 64-vertex standard cellulation of (S (2))(3), such that the -action on this cellulation naturally extends to an action on . Further, the -action on is ``good'', so that the quotient simplicial complex is a 30-vertex triangulation of a'',P (3). In other words, we have constructed a simplicial realization of the branched covering (S (2))(3)-> a'',P (3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of algebraic techniques to solve combinatorial problems is studied in this paper. We formulate the rainbow connectivity problem as a system of polynomial equations. We first consider the case of two colors for which the problem is known to be hard and we then extend the approach to the general case. We also present a formulation of the rainbow connectivity problem as an ideal membership problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general two-, three-systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. We also present novel methods for the determination of the principal screws for four-, five-systems which do not require the explicit computation of the reciprocal systems. Principal screws of the systems of different orders are identified from one uniform criterion, namely that the pitches of the principal screws are the extreme values of the pitch.The classical results of screw theory, namely the equations for the cylindroid and the pitch-hyperboloid associated with the two-and three-systems, respectively have been derived within the proposed framework. Algebraic conditions have been derived for some of the special screw systems. The formulation is also illustrated with several examples including two spatial manipulators of serial and parallel architecture, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computation of the dependency basis is the fundamental step in solving the implication problem for MVDs in relational database theory. We examine this problem from an algebraic perspective. We introduce the notion of the inference basis of a set M of MVDs and show that it contains the maximum information about the logical consequences of M. We propose the notion of an MVD-lattice and develop an algebraic characterization of the inference basis using simple notions from lattice theory. We also establish several properties of MVD-lattices related to the implication problem. Founded on our characterization, we synthesize efficient algorithms for (a) computing the inference basis of a given set M of MVDs; (b) computing the dependency basis of a given attribute set w.r.t. M; and (c) solving the implication problem for MVDs. Finally, we show that our results naturally extend to incorporate FDs also in a way that enables the solution of the implication problem for both FDs and MVDs put together.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This note is concerned with the problem of determining approximate solutions of Fredholm integral equations of the second kind. Approximating the solution of a given integral equation by means of a polynomial, an over-determined system of linear algebraic equations is obtained involving the unknown coefficients, which is finally solved by using the least-squares method. Several examples are examined in detail. (c) 2009 Elsevier Inc. All rights reserved.