18 resultados para Agricultural landscapes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimation of water and solute transit times in catchments is crucial for predicting the response of hydrosystems to external forcings (climatic or anthropogenic). The hydrogeochemical signatures of tracers (either natural or anthropogenic) in streams have been widely used to estimate transit times in catchments as they integrate the various processes at stake. However, most of these tracers are well suited for catchments with mean transit times lower than about 4-5 years. Since the second half of the 20th century, the intensification of agriculture led to a general increase of the nitrogen load in rivers. As nitrate is mainly transported by groundwater in agricultural catchments, this signal can be used to estimate transit times greater than several years, even if nitrate is not a conservative tracer. Conceptual hydrological models can be used to estimate catchment transit times provided their consistency is demonstrated, based on their ability to simulate the stream chemical signatures at various time scales and catchment internal processes such as N storage in groundwater. The objective of this study was to assess if a conceptual lumped model was able to simulate the observed patterns of nitrogen concentration, at various time scales, from seasonal to pluriannual and thus if it was relevant to estimate the nitrogen transit times in headwater catchments. A conceptual lumped model, representing shallow groundwater flow as two parallel linear stores with double porosity, and riparian processes by a constant nitrogen removal function, was applied on two paired agricultural catchments which belong to the Research Observatory ORE AgrHys. The Global Likelihood Uncertainty Estimation (GLUE) approach was used to estimate parameter values and uncertainties. The model performance was assessed on (i) its ability to simulate the contrasted patterns of stream flow and stream nitrate concentrations at seasonal and inter-annual time scales, (ii) its ability to simulate the patterns observed in groundwater at the same temporal scales, and (iii) the consistency of long-term simulations using the calibrated model and the general pattern of the nitrate concentration increase in the region since the beginning of the intensification of agriculture in the 1960s. The simulated nitrate transit times were found more sensitive to climate variability than to parameter uncertainty, and average values were found to be consistent with results from others studies in the same region involving modeling and groundwater dating. This study shows that a simple model can be used to simulate the main dynamics of nitrogen in an intensively polluted catchment and then be used to estimate the transit times of these pollutants in the system which is crucial to guide mitigation plans design and assessment. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O-H center dot center dot center dot N and O-H center dot center dot center dot O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular `confusion' that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-availability of high-spatial-resolution thermal data from satellites on a consistent basis led to the development of different models for sharpening coarse-spatial-resolution thermal data. Thermal sharpening models that are based on the relationship between land-surface temperature (LST) and a vegetation index (VI) such as the normalized difference vegetation index (NDVI) or fraction vegetation cover (FVC) have gained much attention due to their simplicity, physical basis, and operational capability. However, there are hardly any studies in the literature examining comprehensively various VIs apart from NDVI and FVC, which may be better suited for thermal sharpening over agricultural and natural landscapes. The aim of this study is to compare the relative performance of five different VIs, namely NDVI, FVC, the normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI), for thermal sharpening using the DisTrad thermal sharpening model over agricultural and natural landscapes in India. Multi-temporal LST data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors obtained over two different agro-climatic grids in India were disaggregated from 960 m to 120 m spatial resolution. The sharpened LST was compared with the reference LST estimated from the Landsat data at 120 m spatial resolution. In addition to this, MODIS LST was disaggregated from 960 m to 480 m and compared with ground measurements at five sites in India. It was found that NDVI and FVC performed better only under wet conditions, whereas under drier conditions, the performance of NDWI was superior to other indices and produced accurate results. SAVI and MSAVI always produced poorer results compared with NDVI/FVC and NDWI for wet and dry cases, respectively.