16 resultados para Adverse event relatedness
Filtro por publicador
- JISC Information Environment Repository (4)
- Repository Napier (1)
- Aquatic Commons (13)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Boston College Law School, Boston College (BC), United States (2)
- Boston University Digital Common (1)
- Brock University, Canada (6)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (20)
- CentAUR: Central Archive University of Reading - UK (82)
- Center for Jewish History Digital Collections (2)
- Centro Hospitalar do Porto (1)
- Chapman University Digital Commons - CA - USA (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (31)
- Cochin University of Science & Technology (CUSAT), India (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (1)
- CUNY Academic Works (6)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Archives@Colby (2)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (10)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (14)
- Indian Institute of Science - Bangalore - Índia (16)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (12)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (123)
- Queensland University of Technology - ePrints Archive (182)
- Repositorio Academico Digital UANL (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (14)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (38)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- School of Medicine, Washington University, United States (3)
- Scielo España (1)
- Scientific Open-access Literature Archive and Repository (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (14)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (11)
- Université de Montréal, Canada (9)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (2)
- University of Washington (4)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Most pattern mining methods yield a large number of frequent patterns, and isolating a small relevant subset of patterns is a challenging problem of current interest. In this paper, we address this problem in the context of discovering frequent episodes from symbolic time-series data. Motivated by the Minimum Description Length principle, we formulate the problem of selecting relevant subset of patterns as one of searching for a subset of patterns that achieves best data compression. We present algorithms for discovering small sets of relevant non-redundant episodes that achieve good data compression. The algorithms employ a novel encoding scheme and use serial episodes with inter-event constraints as the patterns. We present extensive simulation studies with both synthetic and real data, comparing our method with the existing schemes such as GoKrimp and SQS. We also demonstrate the effectiveness of these algorithms on event sequences from a composable conveyor system; this system represents a new application area where use of frequent patterns for compressing the event sequence is likely to be important for decision support and control.