147 resultados para Advanced signal processing
Resumo:
We introduce a novel temporal feature of a signal, namely extrema-based signal track length (ESTL) for the problem of speech segmentation. We show that ESTL measure is sensitive to both amplitude and frequency of the signal. The short-time ESTL (ST_ESTL) shows a promising way to capture the significant segments of speech signal, where the segments correspond to acoustic units of speech having distinct temporal waveforms. We compare ESTL based segmentation with ML and STM methods and find that it is as good as spectral feature based segmentation, but with lesser computational complexity.
Resumo:
In this paper, we develop a low-complexity message passing algorithm for joint support and signal recovery of approximately sparse signals. The problem of recovery of strictly sparse signals from noisy measurements can be viewed as a problem of recovery of approximately sparse signals from noiseless measurements, making the approach applicable to strictly sparse signal recovery from noisy measurements. The support recovery embedded in the approach makes it suitable for recovery of signals with same sparsity profiles, as in the problem of multiple measurement vectors (MMV). Simulation results show that the proposed algorithm, termed as JSSR-MP (joint support and signal recovery via message passing) algorithm, achieves performance comparable to that of sparse Bayesian learning (M-SBL) algorithm in the literature, at one order less complexity compared to the M-SBL algorithm.
Resumo:
This paper presents a method of designing a programmable signal processor based on a bit parallel matrix vector matrix multiplier (linear transformer). The salient feature of this design is that the efficiency of the direct vector matrix multiplier is improved and VLSI design is made much simpler by trading off the more expensive arithematic operation (multiplication) for 'cheaper' manipulation (addition/subtraction) of the data.
Resumo:
The design and operation of the minimum cost classifier, where the total cost is the sum of the measurement cost and the classification cost, is computationally complex. Noting the difficulties associated with this approach, decision tree design directly from a set of labelled samples is proposed in this paper. The feature space is first partitioned to transform the problem to one of discrete features. The resulting problem is solved by a dynamic programming algorithm over an explicitly ordered state space of all outcomes of all feature subsets. The solution procedure is very general and is applicable to any minimum cost pattern classification problem in which each feature has a finite number of outcomes. These techniques are applied to (i) voiced, unvoiced, and silence classification of speech, and (ii) spoken vowel recognition. The resulting decision trees are operationally very efficient and yield attractive classification accuracies.
Resumo:
The coding gain in subband coding, a popular technique for achieving signal compression, depends on how the input signal spectrum is decomposed into subbands. The optimality of such decomposition is conventionally addressed by designing appropriate filter banks. The issue of optimal decomposition of the input spectrum is addressed by choosing the set of band that, for a given number of bands, will achieve maximum coding gain. A set of necessary conditions for such optimality is derived, and an algorithm to determine the optimal band edges is then proposed. These band edges along with ideal filters, achieve the upper bound of coding gain for a given number of bands. It is shown that with ideal filters, as well as with realizable filters for some given effective length, such a decomposition system performs better than the conventional nonuniform binary tree-structured decomposition in some cases for AR sources as well as images
Resumo:
This paper presents the design and performance analysis of a detector based on suprathreshold stochastic resonance (SSR) for the detection of deterministic signals in heavy-tailed non-Gaussian noise. The detector consists of a matched filter preceded by an SSR system which acts as a preprocessor. The SSR system is composed of an array of 2-level quantizers with independent and identically distributed (i.i.d) noise added to the input of each quantizer. The standard deviation sigma of quantizer noise is chosen to maximize the detection probability for a given false alarm probability. In the case of a weak signal, the optimum sigma also minimizes the mean-square difference between the output of the quantizer array and the output of the nonlinear transformation of the locally optimum detector. The optimum sigma depends only on the probability density functions (pdfs) of input noise and quantizer noise for weak signals, and also on the signal amplitude and the false alarm probability for non-weak signals. Improvement in detector performance stems primarily from quantization and to a lesser extent from the optimization of quantizer noise. For most input noise pdfs, the performance of the SSR detector is very close to that of the optimum detector. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Gabor's analytic signal (AS) is a unique complex signal corresponding to a real signal, but in general, it admits infinitely-many combinations of amplitude and frequency modulations (AM and FM, respectively). The standard approach is to enforce a non-negativity constraint on the AM, but this results in discontinuities in the corresponding phase modulation (PM), and hence, an FM with discontinuities particularly when the underlying AM-FM signal is over-modulated. In this letter, we analyze the phase discontinuities and propose a technique to compute smooth AM and FM from the AS, by relaxing the non-negativity constraint on the AM. The proposed technique is effective at handling over-modulated signals. We present simulation results to support the theoretical calculations.
Resumo:
The classical approach to A/D conversion has been uniform sampling and we get perfect reconstruction for bandlimited signals by satisfying the Nyquist Sampling Theorem. We propose a non-uniform sampling scheme based on level crossing (LC) time information. We show stable reconstruction of bandpass signals with correct scale factor and hence a unique reconstruction from only the non-uniform time information. For reconstruction from the level crossings we make use of the sparse reconstruction based optimization by constraining the bandpass signal to be sparse in its frequency content. While overdetermined system of equations is resorted to in the literature we use an undetermined approach along with sparse reconstruction formulation. We could get a reconstruction SNR > 20dB and perfect support recovery with probability close to 1, in noise-less case and with lower probability in the noisy case. Random picking of LC from different levels over the same limited signal duration and for the same length of information, is seen to be advantageous for reconstruction.
Resumo:
This paper considers the problem of weak signal detection in the presence of navigation data bits for Global Navigation Satellite System (GNSS) receivers. Typically, a set of partial coherent integration outputs are non-coherently accumulated to combat the effects of model uncertainties such as the presence of navigation data-bits and/or frequency uncertainty, resulting in a sub-optimal test statistic. In this work, the test-statistic for weak signal detection is derived in the presence of navigation data-bits from the likelihood ratio. It is highlighted that averaging the likelihood ratio based test-statistic over the prior distributions of the unknown data bits and the carrier phase uncertainty leads to the conventional Post Detection Integration (PDI) technique for detection. To improve the performance in the presence of model uncertainties, a novel cyclostationarity based sub-optimal PDI technique is proposed. The test statistic is analytically characterized, and shown to be robust to the presence of navigation data-bits, frequency, phase and noise uncertainties. Monte Carlo simulation results illustrate the validity of the theoretical results and the superior performance offered by the proposed detector in the presence of model uncertainties.
Resumo:
We address the problem of signal reconstruction from Fourier transform magnitude spectrum. The problem arises in many real-world scenarios where magnitude-only measurements are possible, but it is required to construct a complex-valued signal starting from those measurements. We present some new general results in this context and show that the previously known results on minimum-phase rational transfer functions, and recoverability of minimum-phase functions from magnitude spectrum, form special cases of the results reported in this paper. Some simulation results are also provided to demonstrate the practical feasibility of the reconstruction methodology.
Resumo:
This paper presents the formulation and performance analysis of four techniques for detection of a narrowband acoustic source in a shallow range-independent ocean using an acoustic vector sensor (AVS) array. The array signal vector is not known due to the unknown location of the source. Hence all detectors are based on a generalized likelihood ratio test (GLRT) which involves estimation of the array signal vector. One non-parametric and three parametric (model-based) signal estimators are presented. It is shown that there is a strong correlation between the detector performance and the mean-square signal estimation error. Theoretical expressions for probability of false alarm and probability of detection are derived for all the detectors, and the theoretical predictions are compared with simulation results. It is shown that the detection performance of an AVS array with a certain number of sensors is equal to or slightly better than that of a conventional acoustic pressure sensor array with thrice as many sensors.
Resumo:
The amplitude-modulation (AM) and phase-modulation (PM) of an amplitude-modulated frequency-modulated (AM-FM) signal are defined as the modulus and phase angle, respectively, of the analytic signal (AS). The FM is defined as the derivative of the PM. However, this standard definition results in a PM with jump discontinuities in cases when the AM index exceeds unity, resulting in an FM that contains impulses. We propose a new approach to define smooth AM, PM, and FM for the AS, where the PM is computed as the solution to an optimization problem based on a vector interpretation of the AS. Our approach is directly linked to the fractional Hilbert transform (FrHT) and leads to an eigenvalue problem. The resulting PM and AM are shown to be smooth, and in particular, the AM turns out to be bipolar. We show an equivalence of the eigenvalue formulation to the square of the AS, and arrive at a simple method to compute the smooth PM. Some examples on synthesized and real signals are provided to validate the theoretical calculations.
Resumo:
The analytic signal (AS) was proposed by Gabor as a complex signal corresponding to a given real signal. The AS has a one-sided spectrum and gives rise to meaningful spectral averages. The Hilbert transform (HT) is a key component in Gabor's AS construction. We generalize the construction methodology by employing the fractional Hilbert transform (FrHT), without going through the standard fractional Fourier transform (FrFT) route. We discuss some properties of the fractional Hilbert operator and show how decomposition of the operator in terms of the identity and the standard Hilbert operators enables the construction of a family of analytic signals. We show that these analytic signals also satisfy Bedrosian-type properties and that their time-frequency localization properties are unaltered. We also propose a generalized-phase AS (GPAS) using a generalized-phase Hilbert transform (GPHT). We show that the GPHT shares many properties of the FrHT, in particular, selective highlighting of singularities, and a connection with Lie groups. We also investigate the duality between analyticity and causality concepts to arrive at a representation of causal signals in terms of the FrHT and GPHT. On the application front, we develop a secure multi-key single-sideband (SSB) modulation scheme and analyze its performance in noise and sensitivity to security key perturbations. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Although many sparse recovery algorithms have been proposed recently in compressed sensing (CS), it is well known that the performance of any sparse recovery algorithm depends on many parameters like dimension of the sparse signal, level of sparsity, and measurement noise power. It has been observed that a satisfactory performance of the sparse recovery algorithms requires a minimum number of measurements. This minimum number is different for different algorithms. In many applications, the number of measurements is unlikely to meet this requirement and any scheme to improve performance with fewer measurements is of significant interest in CS. Empirically, it has also been observed that the performance of the sparse recovery algorithms also depends on the underlying statistical distribution of the nonzero elements of the signal, which may not be known a priori in practice. Interestingly, it can be observed that the performance degradation of the sparse recovery algorithms in these cases does not always imply a complete failure. In this paper, we study this scenario and show that by fusing the estimates of multiple sparse recovery algorithms, which work with different principles, we can improve the sparse signal recovery. We present the theoretical analysis to derive sufficient conditions for performance improvement of the proposed schemes. We demonstrate the advantage of the proposed methods through numerical simulations for both synthetic and real signals.