56 resultados para Actuator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we describe a novel FBG interrogation system in which FBGs are used as both sensing and reference elements. The reference FBGs is bonded to a mechanical flexure system having a linear amplification of 1:3.5, which is actuated using a piezo-actuator by applying a 0-150V ramp. The lengths of the reference gratings decide the maximum strain that can be applied to the reference grating, which in turn decides that strain range which can be interrogated. The main advantages of the present system are the on-line measurement of the wavelength shifts, small size, good sensitivity, multiplexing capability and low cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The change in extension-twist Coupling due to delamination in antisymmetric laminates is experimentally measured. Experimental results are compared with the results from analytical expression existing in literature and finite element analysis. The application of the Macro-Fiber Composite (MFC) developed at the NASA Langley Research Center for sensing the delamination in the laminates is investigated. While many applications have been reported in the literature using the MFC as an actuator, here its use as a twist sensor has been studied. The real-life application envisaged is structural health monitoring of laminated composite flexbeams taking advantage of the symmetry in the structure. Apart from the defect detection under symmetric conditions, other methods of health monitoring for the same structure are reported for further validation. Results show that MFC works well as a sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the structural elements like beams, cables etc. are flexible and should be modeled as distributed parameter systems (DPS) to represent the reality better. For large structures, the usual approach of 'modal representation' is not an accurate representation. Moreover, for excessive vibrations (possibly due to strong wind, earthquake etc.), external power source (controller) is needed to suppress it, as the natural damping of these structures is usually small. In this paper, we propose to use a recently developed optinial dynamic inversion technique to design a set of discrete controllers for this purpose. We assume that the control force to the structure is applied through finite number of actuators, which are located at predefined locations in the spatial domain. The method used in this paper determines control forces directly from the partial differential equation (PDE) model of the system. The formulation has better practical significance, both because it leads to a closed form solution of the controller (hence avoids computational issues) as well as because a set of discrete actuators along the spatial domain can be implemented with relative ease (as compared to a continuous actuator).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lamb-wave-based damage detection methods using the triangulation technique are not suitable for handling structures with complex shapes and discontinuities as the parametric/analytical representation of these structures is very difficult. The geodesic concept is used along with the triangulation technique to overcome the above problem. The present work is based on the fundamental fact that a wave takes the minimum energy path to travel between two points on any multiply connected surface and this reduces to the shortest distance path or geodesic. The geodesics are computed on the meshed surface of the structure using the fast marching method. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrices are compared and their difference gives the time information about the reflection of waves from the damage. A wavelet transform is used to extract the arrival time information of the wave scattered by the damage from the acquired Lamb wave signals. The computed geodesics and time information are used in the ellipse algorithm of triangulation formulation to locate the loci of possible damage location points for each actuator-sensor pair. The results obtained for all actuator-sensor pairs are combined and the intersection of multiple loci gives the damage location result. Experiments were conducted in aluminum and composite plate specimens to validate this method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large class of work in the robot manipulator literature deals with the kinematical resolution of redundancy based on the pseudo-inverse of the manipulator Jacobian. In this paper an alternative dynamical approach to redundancy resolution is developed which utilizes the mapping between the actuator torques and the acceleration of the end-effector, at a given dynamic state of the manipulator. The potential advantages of the approach are discussed and an example of a planar 3R manipulator following a circular end-effector trajectory is used to illustrate the proposed approach as well as to compare it with the more well-known approach based on the pseudo-inverse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the structural elements like beams, cables etc. are flexible and should be modeled as distributed parameter systems (DPS) to represent the reality better. For large structures, the usual approach of 'modal representation' is not an accurate representation. Moreover, for excessive vibrations (possibly due to strong wind, earthquake etc.), external power source (controller) is needed to suppress it, as the natural damping of these structures is usually small. In this paper, we propose to use a recently developed optimal dynamic inversion technique to design a set of discrete controllers for this purpose. We assume that the control force to the structure is applied through finite number of actuators, which are located at predefined locations in the spatial domain. The method used in this paper determines control forces directly from the partial differential equation (PDE) model of the system. The formulation has better practical significance, both because it leads to a closed form solution of the controller (hence avoids computational issues) as well as because a set of discrete actuators along the spatial domain can be implemented with relative ease (as compared to a continuous actuator)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved. It has been demonstrated that a desired temperature profile can be achieved starting from any arbitrary initial temperature profile.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A shear flexible 4-noded finite element formulation, having five mechanical degrees of freedom per node, is presented for modeling the dynamic as well as the static thermal response of laminated composites containing distributed piezoelectric layers. This element has been developed to have one electrical degree of freedom per piezoelectric layer. The mass, stiffness and thermo-electro-mechanical coupling effects on the actuator and sensor layers have been considered. Numerical studies have been conducted to investigate both the sensory and active responses on piezoelectric composite beam and plate structures. It is. concluded that both the thermal and pyroelectric effects are important and need to be considered in the precision distributed control of intelligent structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MEMS resonators have potential applications in the areas of RF-MEMS, clock oscillators, ultrasound transducers, etc. The important characteristics of a resonator are its resonant frequency and Q-factor (a measure of damping). Usually large damping in macro structures makes it difficult to excite and measure their higher modes. In contrast, MEMS resonators seem amenable to excitation in higher modes. In this paper, 28 modes of vibration of an electrothermal actuator are experimentally captured–perhaps the highest number of modes experimentally captured so far. We verify these modes with FEM simulations and report that all the measured frequencies are within 5% of theoretically predicted values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we incorporate a novel approach to synthesize a class of closed-loop feedback control, based on the variational structure assignment. Properties of a viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. Wave dispersion properties of onedimensional beam system have been studied. Efficiency of the chosen viscoelastic model in enhancing damping and stability properties of one-dimensional viscoelastic bar have been analyzed. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These assign the phenomenology based internal strain rate damping parameter of a viscoelastic system to the usual elastic structure but with active control. In the formulation a model of cantilever beam with non-collocated actuator and sensor has been considered. The formulation leads to the matrix identification problem of two dynamic stiffness matrices. The method has been simplified to obtain control system gains for the free vibration control of a cantilever beam system with collocated actuator-sensor, using quadratic optimal control and pole-placement methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the simulation results from the dynamic analysis of a Shape Memory Alloy (SMA) actuator. The emphasis is on understanding the dynamic behavior under various loading rates and boundary conditions, resulting in complex scenarios such as thermal and stress gradients. Also, due to the polycrystalline nature of SMA wires, presence of microstructural inhomogeneity is inevitable. Probing the effect of inhomogeneity on the dynamic behavior can facilitate the prediction of life and characteristics of SMA wire actuator under varieties of boundary and loading conditions. To study the effect of these factors, an initial boundary value problem of SMA wire is formulated. This is subsequently solved using finite element method. The dynamic response of the SMA wire actuator is analyzed under mechanical loading and results are reported. Effect of loading rate, micro-structural inhomogeneity and thermal boundary conditions on the dynamic response of SMA wire actuator is investigated and the simulation results are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, theoretical and the experimental studies are reported on the adaptive control of vibration transmission in a strut system subjected to a longitudinal pulse train excitation. In the control scheme, a magneto-strictive actuator is employed at the downstream transmission point in the secondary path. The actuator dynamics is taken into account. The system boundary parameters are first estimated off-line, and later employed to simulate the system dynamics. A Delayed-X Filtered-E spectral algorithm is proposed and implemented in real time. The underlying mechanics based filter construction allows for the time varying system dynamics to be taken into account. This work should be of interest for active control of vibration and noise transmission in helicopter gearbox support struts and other systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we discuss the recent progresses in spectral finite element modeling of complex structures and its application in real-time structural health monitoring system based on sensor-actuator network and near real-time computation of Damage Force Indicator (DFI) vector. A waveguide network formalism is developed by mapping the original variational problem into the variational problem involving product spaces of 1D waveguides. Numerical convergence is studied using a h()-refinement scheme, where is the wavelength of interest. Computational issues towards successful implementation of this method with SHM system are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Displacement-amplifying compliant mechanisms (DaCMs) reported in literature are mostly used for actuator applications. This paper considers them for sensor applications that rely on displacement measurement, and evaluates them objectively. The main goal is to increase the sensitivity under constraints imposed by several secondary requirements and practical constraints. A spring-mass-lever model that effectively captures the addition of a DaCM to a sensor is used in comparing eight DaCMs. We observe that they significantly differ in performance criteria such as geometric advantage, stiffness, natural frequency, mode amplification, factor of safety against failure, cross-axis stiffness, etc., but none excel in all. Thus, a combined figure of merit is proposed using which the most suitable DaCM could be selected for a sensor application. A case-study of a micro machined capacitive accelerometer and another case-study of a vision-based force sensor are included to illustrate the general evaluation and selection procedure of DaCMs with specific applications. Some other insights gained with the analysis presented here were the optimum size-scale for a DaCM, the effect on its natural frequency, limits on its stiffness, and working range of the sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lamb wave type guided wave propagation in foam core sandwich structures and detectability of damages using spectral analysis method are reported in this paper. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented here that shows the applicability of Lamb wave type guided ultrasonic wave for detection of damage in foam core sandwich structures. Sandwich beam specimens were fabricated with 10 mm thick foam core and 0.3 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense guided wave. Group velocity dispersion curves and frequency response of sensed signal are obtained experimentally. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Delaminations of increasing width are created and detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. A sandwich panel is also fabricated with a planer dimension of 600 mm x 400 mm. Release film delamination is introduced during fabrication. Non-contact Laser Doppler Vibrometer (LDV) is used to scan the panel while exciting with a surface bonded piezoelectric actuator. Presence of damage is confirmed by the reflected wave fringe pattern obtained from the LDV scan. With this approach it is possible to locate and monitor the damages by tracking the wave packets scattered from the damages.