26 resultados para Achnanthes cf. longipes
Resumo:
Applications in various domains often lead to very large and frequently high-dimensional data. Successful algorithms must avoid the curse of dimensionality but at the same time should be computationally efficient. Finding useful patterns in large datasets has attracted considerable interest recently. The primary goal of the paper is to implement an efficient Hybrid Tree based clustering method based on CF-Tree and KD-Tree, and combine the clustering methods with KNN-Classification. The implementation of the algorithm involves many issues like good accuracy, less space and less time. We will evaluate the time and space efficiency, data input order sensitivity, and clustering quality through several experiments.
Resumo:
This paper presents the results of seismic response analysis of layered ground in Ahmedabad City during the earthquake in Bhuj on 26(th) January 2001. An attempt has been made to understand the reasons for the failure of multistoreyed buildings founded on soft alluvial deposits in Ahmedabad. Standard Penetration test at a site very close to the Sabarmati river belt was carried out for geotechnical investigations. The program SHAKE91, widely used in the field of earthquake engineering for computing the seismic response of horizontally layered soil deposits, was used to analyse the soil profile at the selected site considering the ground as one dimensional layered elastic system. The ground accelerations recorded at the ground floor of the Regional Passport Staff Quarters building, which is very close to the investigated site, was used as input motion. Also, Finite Element Analysis was carried out for different configurations of multistorey building frames for evaluating their natural frequencies and is compared with the predominant frequency of the layered soil system. The results reveal that the varying degree of damage to multistorey buildings in the close proximity of Sabarmati river area was essentially due to the large amplification of the ground and the near resonance condition.
Resumo:
Spontaneous halide ejection from a three-coordinate Lewis acid has been shown to offer a remarkable new route to cationic metal complexes featuring a linear, multiply bonded boron-donor Ligand. The exploitation of electron-rich [CpM(PR3)(2)] fragments within boryl systems of the type LnMB(hal)NR2 leads to the spontaneous formation in polar solvents of chemically robust borylene complexes, [LnM(BNR2)](+), with exceptionally low electrophilicity and short M-B bonds. This is reflected by M-B distances (ca. 1.80 angstrom for FeB systems) which are more akin to alkyl-/aryl-substituted borylene complexes and, perhaps most strikingly, by the very low exothermicity associated with the binding of pyridine to the two-coordinate boron center (Delta H = -7.4 kcal mol(-1), cf. -40.7 kcal mol(-1) for BCl3). Despite the strong pi electron release from the metal fragment implied by this suppressed reactivity and by such short M-B bonds, the barrier to rotation about the Fe=B bond in the unsymmetrical variant [CpFe(dmpe)(BN{C6H4OMe-4}Me)](+) is found to be very small (ca. 2.9 kcal mol(-1)). This apparent contradiction is rationalized by the orthogonal orientations of the HOMO and HOMO-2 orbitals of the [CpML2](+) fragment, which mean that the M-B pi interaction does not fall to zero even in the highest energy conformation.
Resumo:
Carbon footprint (CF) refers to the total amount of carbon dioxide and its equivalents emitted due to various anthropogenic activities. Carbon emission and sequestration inventories have been reviewed sector-wise for all federal states in India to identify the sectors and regions responsible for carbon imbalances. This would help in implementing appropriate climate change mitigation and management strategies at disaggregated levels. Major sectors of carbon emissions in India are through electricity generation, transport, domestic energy consumption, industries and agriculture. A majority of carbon storage occurs in forest biomass and soil. This paper focuses on the statewise carbon emissions (CO2. CO and CH4), using region specific emission factors and statewise carbon sequestration capacity. The estimate shows that CO2, CO and CH4 emissions from India are 965.9, 22.5 and 16.9 Tg per year, respectively. Electricity generation contributes 35.5% of total CO2 emission, which is followed by the contribution from transport. Vehicular transport exclusively contributes 25.5% of total emission. The analysis shows that Maharashtra emits higher CO2, followed by Andhra Pradesh, Uttar Pradesh, Gujarat, Tamil Nadu and West Bengal. The carbon status, which is the ratio of annual carbon storage against carbon emission, for each federal state is computed. This shows that small states and union territories (UT) like Arunachal Pradesh, Mizoram and Andaman and Nicobar Islands, where carbon sequestration is higher due to good vegetation cover, have carbon status > 1. Annually, 7.35% of total carbon emissions get stored either in forest biomass or soil, out of which 34% is in Arunachal Pradesh, Madhya Pradesh, Chhattisgarh and Orissa. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Dynamic Voltage and Frequency Scaling (DVFS) offers a huge potential for designing trade-offs involving energy, power, temperature and performance of computing systems. In this paper, we evaluate three different DVFS schemes - our enhancement of a Petri net performance model based DVFS method for sequential programs to stream programs, a simple profile based Linear Scaling method, and an existing hardware based DVFS method for multithreaded applications - using multithreaded stream applications, in a full system Chip Multiprocessor (CMP) simulator. From our evaluation, we find that the software based methods achieve significant Energy/Throughput2(ET−2) improvements. The hardware based scheme degrades performance heavily and suffers ET−2 loss. Our results indicate that the simple profile based scheme achieves the benefits of the complex Petri net based scheme for stream programs, and present a strong case for the need for independent voltage/frequency control for different cores of CMPs, which is lacking in most of the state-of-the-art CMPs. This is in contrast to the conclusions of a recent evaluation of per-core DVFS schemes for multithreaded applications for CMPs.
Resumo:
Acoustic signal variation and female preference for different signal components constitute the prerequisite framework to study the mechanisms of sexual selection that shape acoustic communication. Despite several studies of acoustic communication in crickets, information on both male calling song variation in the field and female preference in the same system is lacking for most species. Previous studies on acoustic signal variation either were carried out on populations maintained in the laboratory or did not investigate signal repeatability. We therefore used repeatability analysis to quantify variation in the spectral, temporal and amplitudinal characteristics of the male calling song of the field cricket Plebeiogryllus guttiventris in a wild population, at two temporal scales, within and across nights. Carrier frequency (CF) was the most repeatable character across nights, whereas chirp period (CP) had low repeatability across nights. We investigated whether female preferences were more likely to be based on features with high (CF) or low (CP) repeatability. Females showed no consistent preferences for CF but were significantly more attracted towards signals with short CPs. The attractiveness of lower CP calls disappeared, however, when traded off with sound pressure level (SPL). SPL was the only acoustic feature that was significantly positively correlated with male body size. Since relative SPL affects female phonotaxis strongly and can vary unpredictably based on male spacing, our results suggest that even strong female preferences for acoustic features may not necessarily translate into greater advantage for males possessing these features in the field. (C) 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
CuIn1-xAlxSe2 (CIASe) thin films were grown by a simple sol-gel route followed by annealing under vacuum. Parameters related to the spin-orbit (Delta(SO)) and crystal field (Delta(CF)) were determined using a quasi-cubic model. Highly oriented (002) aluminum doped (2%) ZnO, 100 nm thin films, were co-sputtered for CuIn1-xAlxSe2/AZnO based solar cells. Barrier height and ideality factor varied from 0.63 eV to 0.51 eV and 1.3186 to 2.095 in the dark and under 1.38 A. M 1.5 solar illumination respectively. Current-voltage characteristics carried out at 300 K were confined to a triangle, exhibiting three limiting conduction mechanisms: Ohms law, trap-filled limit curve and SCLC, with 0.2 V being the cross-over voltage, for a quadratic transition from Ohm's to Child's law. Visible photodetection was demonstrated with a CIASe/AZO photodiode configuration. Photocurrent was enhanced by one order from 3 x 10(-3) A in the dark at 1 V to 3 x 10(-2) A upon 1.38 sun illumination. The optimized photodiode exhibits an external quantum efficiency of over 32% to 10% from 350 to 1100 nm at high intensity 17.99 mW cm(-2) solar illumination. High responsivity R-lambda similar to 920 A W-1, sensitivity S similar to 9.0, specific detectivity D* similar to 3 x 10(14) Jones, make CIASe a potential absorber for enhancing the forthcoming technological applications of photodetection.
Resumo:
The authors consider the channel estimation problem in the context of a linear equaliser designed for a frequency selective channel, which relies on the minimum bit-error-ratio (MBER) optimisation framework. Previous literature has shown that the MBER-based signal detection may outperform its minimum-mean-square-error (MMSE) counterpart in the bit-error-ratio performance sense. In this study, they develop a framework for channel estimation by first discretising the parameter space and then posing it as a detection problem. Explicitly, the MBER cost function (CF) is derived and its performance studied, when transmitting binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals. It is demonstrated that the MBER based CF aided scheme is capable of outperforming existing MMSE, least square-based solutions.
Resumo:
A comprehensive analysis of the crystal packing and the energetic features of a series of four biologically active molecules belonging to the family of substituted 4-(benzylideneamino)-3-(4-fluoro-3-phenoxyphenyl)-1H-1,2,4-triazole-5-(4 H)-thione derivatives have been performed based on the molecular conformation and the supramolecular packing. This involves the formation of a short centrosymmetric R-2(2)(8) NH...S supramolecular synthon in the solid state, including the presence of CH...S, CH...O, CH...N, CH...F, CH...Cl, CF...FC, CCl...ClC, and CH...pi intermolecular interactions along with pp stacking to evaluate the role of noncovalent interactions in the crystal. The presence of such synthons has a substantial contribution toward the interaction energy (-18 to -20 kcal/mol) as obtained from the PIXEL calculation, wherein the Coulombic and polarization contribution are more significant than the dispersion contribution. The geometrical characteristics of such synthons favor short distance, and the population of related molecules having these geometries is rare as has been obtained from the Cambridge Structural Database (CSD). Furthermore, their interaction energies have been compared with those present in our molecules in the solid state. The topological characteristics of the NH...S supramolecular synthon, in addition to related weak interactions, CH...N, CH...Cl, CF...FC, and CCl...ClC, have been estimated using the quantum theory of atoms in molecules (QTAIM). In addition, an analysis of the Hirshfeld surface and associated fingerprint plots of these four molecules also have provided a platform for the evaluation of the contribution of different atom...atom contacts, which contribute toward the packing of the molecules in solids.
Resumo:
Lightweight and flexible electromagnetic shielding materials were designed by selectively localizing multiwall carbon nanotubes (MWNTs) anchored magnetic nanoparticles in melt mixed co-continuous blends of polyvinylidene fluoride (PVDF) and poly(styrene-co-acrylonitrile) (SAN). In order to facilitate better dispersion, the MWNTs were modified using pyrenebutyric acid (PBA) via pi-pi stacking. While one of the two-targeted properties, i.e., high electrical conductivity, was achieved by PBA modified MWNTs, high magnetic loss was accomplished by introducing nickel (NF) or cobalt ferrites (CF). Moreover, the attenuation by absorption can be tuned either by using NF (58% absorption) or CF (64% absorption) in combination with PBA-MWNTs. More interestingly, when CF was anchored on to MWNTs via the pyrene derivative, the minimum reflection loss attained was -55 dB in the Ku band (12-18 GHz) frequency and with a large bandwidth. In addition, the EM waves were blocked mostly by absorption (70%). This study opens new avenues in designing flexible and lightweight microwave absorbers.