67 resultados para Absorption coefficient, 220-600 nm
Resumo:
Tin sulfide (SnS) is a material of interest for use as an absorber in low cost solar cells. Single crystals of SnS were grown by the physical vapor deposition technique. The grown crystals were characterized to evaluate the composition, structure, morphology, electrical and optical properties using appropriate techniques. The composition analysis indicated that the crystals were nearly stoichiometric with Sn-to-S atomic percent ratio of 1.02. Study of their morphology revealed the layered type growth mechanism with low surface roughness. The grown crystals had orthorhombic structure with (0 4 0) orientation. They exhibited an indirect optical band gap of 1.06 eV and direct band gap of 1.21 eV with high absorption coefficient (up to 10(3) cm(-1)) above the fundamental absorption edge. The grown crystals were of p-type with an electrical resistivity of 120 Omega cm and carrier concentration 1.52 x 10(15) cm(-3). Analysis of optical absorption and diffuse reflectance spectra showed the presence of a wide absorption band in the wavelength range 300-1200 nm, which closely matches with a significant part of solar radiation spectrum. The obtained results were discussed to assess the suitability of the SnS crystal for the fabrication of optoelectronic devices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Silver selenide thin films of thickness between 80 nm and 160 nm were prepared by thermal evaporation technique at a high vacuum better than 2x10(-5)mbar on well cleaned glass substrates at a deposition rate of 0.2 nm/sec. Silver selenide thin films were polycrystalline with orthorhombic structure. Ellipsometric spectra of silver selenide thin films have been recorded in the wavelength range between 300 nm and 700 nm. Optical constants like refractive index, extinction coefficient, absorption coefficient, and optical band gap of silver selenide thin film have been calculated from the recorded spectra. The refractive index of silver selenide has been found to vary between 1.9 and 3.2 and the extinction coefficient varies from 0.5 to 1.6 with respect to their corresponding thickness of the films. Transmittance spectra of these films have been recorded in the wavelength range between 300 nm and 900 nm and its spectral data are analysed. The photoluminescence studies have been carried out on silver selenide thin films and the strong emission peak is found around 1.7 eV. The calculated optical band of thermally evaporated silver selenide thin films is found to be around 1.7 eV from their Ellipsometric, UV-Visible and Photoluminescence spectroscopic studies.
Resumo:
Thin films of zirconia have been synthesized using reactive DC magnetron sputtering. It has been found that films with good optical constants, high refractive index (1.9 at 600 nm) and low extinction coefficient can be prepared al ambient temperatures. The optical constants and band gnp and hence the composition nle dependent on the deposition parameters such as target power, rate of deposition and oxygen background pressure. Thermal annealing of the films revealed that tile films showed optical and crystalline inhomogeneity and also large variations in optical constants.
Resumo:
A simplified energy‐level scheme is proposed for the photochemical cycle of the bacteriorhodopsin molecule. Rate equations are solved for the detailed light‐induced processes based on this model and the intensity‐induced population densities in various states of the molecule at steady state are computed which are used to obtain an analytic expression for the absorption coefficient of the modulation beam. Modulation of the probe laser‐beam transmission by the modulation‐laser‐beam intensity‐induced population changes is analyzed. It is predicted that for a probe beam at 412 nm up to 82% modulation can be achieved using a laser beam intensity of 3.2 W/cm2 at 570 nm. For temperatures ∼77 K, the transmission at 610 nm can be switched from zero to 81% for modulating laser intensity of 11 W/cm2. Construction of a spatial light modulator based on bacteriorhodopsin molecules is proposed and some of its features are discussed.
Resumo:
Thin films of Sb40Se20S40 with thickness 1000 nm were prepared by thermal evaporation technique. The amorphous nature of the thin films was verified by X-ray diffractometer. The chemical composition of the deposited thin films was examined by energy dispersive X-ray analysis (EDAX). The changes in optical properties due to the influence of laser radiation on amorphous thin films of Sb40Se20S40 glassy alloy were calculated from absorbance spectra as a function of photon energy in the wavelength region 450-900 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been observed that laser-irradiation of the films leads to a decrease in optical band gap while increase in absorption coefficient. The decrease in the optical band gap is explained on the basis of change in nature of films due to disorderness. The optical changes are supported by X-ray photoelectron spectroscopy and Raman spectroscopy. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time-resolved differential reflectivity and transmission spectroscopy at 3.15 eV and 1.57 eV photon energies. The complex behaviour of the differential transmission and reflectivity transients is the mixed contributions from the crystalline core and the amorphous silicon on the nanowire surface and the substrate where competing effects of state-filling and photoinduced absorption govern the carrier dynamics. Faster relaxation rates are observed on increasing the photogenerated carrier density. Independent experimental results on crystalline silicon-on-sapphire (SOS) help us in separating the contributions from the carrier dynamics in crystalline core and the amorphous regions in the nanowire samples. Further, single-beam z-scan nonlinear transmission experiments at 1.57 eV in both open- and close-aperture configurations yield two-photon absorption coefficient beta (similar to 3 cm/GW) and nonlinear refraction coefficient gamma (-2.5 x 10 (-aEuro parts per thousand 4) cm(2)/GW).
Resumo:
We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.
Resumo:
ZnO:Eu (0.1 mol%) nanopowders have been synthesized by auto ignition based low temperature solution combustion method. Powder X-ray diffraction (PXRD) patterns confirm the nanosized particles which exhibit hexagonal wurtzite structure. The crystallite size estimated from Scherrer's formula was found to be in the range 35-39 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies reveal particles are agglomerated with quasi-hexagonal morphology. A blue shift of absorption edge with increase in band gap is observed for Eu doped ZnO samples. Upon 254 nm excitation, ZnO:Eu nanopowders show peaks in regions blue (420-484 nm), green (528 nm) and red (600 nm) which corresponds to both Eu2+ and Eu3+ ions. The electron paramagnetic resonance (EPR) spectrum exhibits a broad resonance signal at g= 4.195 which is attributed to Eu2+ ions. Further, EPR and thermo-luminescence (TL) studies reveal presence of native defects in this phosphor. Using TL glow peaks the trap parameters have been evaluated and discussed. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A simple colorimetric detection of melamine was studied using 15 nm (AuNPs-I), 30 nm (AuNPs-II), and 40 nm (AuNPs-III) citrate-capped gold nanoparticles (AuNPs). The AuNPs aggregated in aqueous solution in the presence of melamine, showing a visual color change from red to blue. This color change led to a shift in the absorption peak from 527 nm, 526 nm, and 525 nm to 638 nm, 626 nm, and 680 nm for AuNPs-I, AuNPs-II, and AuNPs-III, respectively. For all the three AuNPs, linearity was observed between the melamine concentration in aqueous solution and the absorbance ratios, A(638/527), A(626/525), and A(680/526), respectively. The limit of detection (LOD) for melamine for the AuNPs-II was found to be 2.37 x 10(-8) M (correlation coefficient R-2 = 0.9745), which showed better sensitivity as compared to the LOD of the AuNPs-I and AuNPs-III, which were 3.3 x 10(-8) M and 8.9 x 10(-8) M, respectively. The synthesis of AuNPs-II also involved a lower HAuCl4 concentration compared with the other two types of AuNPs, which may reduce the process cost. The AuNPs-II was selected to analyze melamine in pre-treated milk samples, and the recovery percentage was in the range of 91-106%. Thus, the efficient detection of melamine was possible using AuNPs-II for the on-site detection without the aid of expensive instruments.
Resumo:
A new spectrophotometric method for the determination of molybdenum in industrial materials has been developed using the leaf extract of Syzygium jambolanum DC based on the reaction of Mo (VI) at pH 7.0 to produce an orange-yellow complex with an absorption maximum at 426 nm. The molar absorptivity of the complex is 4.27 x 10(4) l mol(-1) cm(-1) and the absorbance, is linear in the range 0.05-0.8 ppm. Sandell sensitivity coefficient was found to be 2.25 x 10(-3) mu g/cm(2). The method is ten times more sensitive than the aqueous thiocyanate system. It has been applied successfully in micronutrient fertilizer, artificial freshwater and sea-water analyses.
Resumo:
Silver indium sulfide (AgInS2) thin films are deposited by sequential sputtering of metallic precursor Ag/In] followed by sulfurization. Effect of substrate temperature (Tsub) during sulfurization process on the film growth is studied by varying the substrate temperature from 350 to 500 degrees C. Films prepared above 350 degrees C showed a mixture of orthorhombic and tetragonal phases of AgInS2 with tetragonal phase being dominant. Better crystalline, nearly stoichiometric and p-type films are obtained at a substrate temperature of 500 degrees C. The characteristic A(1) mode of AgInS2 chalcopyrite structure is observed in the Raman spectra at 274 cm(-1) for the films prepared above 350 degrees C. The grain size of the film increases from 489 to 895 nm with the increase in substrate temperature. The binding energies of the constituent elements are determined using XPS. The band gap of AgInS2 films is in the range of 1.64-1.92 eV and the absorption coefficient is found to be >10(4) cm(-1). Preliminary studies on the AgInS2/ZnS solar cell showed an efficiency of 0.3%. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Thin films of Cu2SnS3 (CTS) were deposited by the facile solution processed sol-gel route followed by a low-temperature annealing. The Cu-Sn-thiourea complex formation was analysed using Fourier Transform Infrared spectrophotometer (FTIR). The various phase transformations and the deposition temperature range for the initial precursor solution was determined using Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). X-Ray Diffraction (XRD) studies revealed the tetragonal phase formation of the CTS annealed films. Raman spectroscopy studies further confirmed the tetragonal phase formation and the absence of any deterioratory secondary phases. The morphological investigations and compositional analysis of the films were determined using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) respectively. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 1.3 nm. The absorption coefficient was found to be 10(4) cm(-1) and bandgap 1.3 eV which qualifies CTS to be a potential candidate for photovoltaic applications. The refractive index, extinction coefficient and relative permittivity of the film were measured by Spectroscopic ellipsometry. Hall effect measurements, indicated the p type nature of the films with a hole concentration of 2 x 10(18) cm(-3), electrical conductivity of 9 S/cm and a hole mobility of 29 cm(2)/V. The properties of CTS as deduced from the current study, present CTS as a potential absorber layer material for thin film solar cells. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A water soluble third generation poly(alkyl aryl ether) dendrimer was examined for its ability to solubilize hydrophobic polyaromatic molecules in water and facilitate non-radiative resonance energy transfer between them. One to two orders of magnitude higher aqueous solubilities of pyrene (PY), perylene (PE), acridine yellow (AY) and acridine orange (AO) were observed in presence of a defined concentration of the dendrimer. A reduction in the quantum yield of the donor PY* emission and a partial decrease in lifetime of the donor excited state revealed the occurrence of energy transfer from dendrimer solubilized excited PY to ground state PE molecules, both present within a dendrimer. The energy transfer efficiency was estimated to be similar to 61%. A cascade resonance energy transfer in a three component system, PY*-to-PE-to-AY and PY*-to-PE-to-AO, was demonstrated through incorporation of AY or AO in the two component PY-PE system. In the three-component system, excitation of PY resulted in emission from AY or AO via a cascade energy transfer process. Careful choice of dye molecules with good spectral overlap and the employment of dendrimer as the medium enabled us to expand absorption-emission wavelengths, from similar to 330 nm to similar to 600 nm in aqueous solution. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a highly scattering object like tissue. In the first part of the work, we reconstructed the optical absorption coefficient mu(u) and particle diffusion coefficient D-B from simulated measurements which are integrals of a quantity computed from the measured intensity and intensity autocorrelation g(2)(tau) at the boundary. In the second part we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the sampled g(2)(tau) measure on the boundary. From the MSD, we compute the storage and loss moduli distributions in the object. We have devised computationally easy methods to construct the sensitivity matrices which are used in the iterative reconstruction algorithms for recovering these parameters from the measurements. The results of the reconstruction of mu(a), D-B, MSD and the viscoelastic parameters, which are presented, show reasonable good position and quantitative accuracy.
Resumo:
ZnO nanoneedles were successfully deposited on flexible polymer substrates at room temperature by activated reactive evaporation. Neither a catalyst nor a template was employed in this synthesis. These synthesized needles measured 500 - 600 nm in length and its diameter varied from 30 - 15 nm from the base to the tip. The single-crystalline nature of the nanoneedle was observed by high-resolution transmission electron microscopy studies. The Raman studies on these nanoneedles had shown that they are oxygen deficient in nature. A possible growth mechanism has been proposed here, in which the nanoneedles nucleate and grow in the gas phase by vapor-solid mechanism.