64 resultados para ALIPHATIC POLYESTERS
Resumo:
A new family of ricinoleic acid based polyesters was synthesized using catalyst free melt-condensation polymerization with sebacic acid, citric acid, mannitol and ricinoleic acid as precursors. The use of FT-IR and NMR characterisation techniques confirms the presence of ester linkages in the as-synthesized polymers. Depending on the precursor combination, their relative amount and the degree of curing, a broad range of elastic modulus (22-327 MPa) and tensile strength (0.7-12.7 MPa) can be obtained in the newly synthesized biopolymers. The polymers show rubbery behaviour at a physiological temperature (37 degrees C) and the contact angles of the synthesized polymers fall in the range of 42 degrees to 71 degrees, making them ideal substrates to study delivery of drugs through polymer scaffolds. The cytocompatibility assessment of the cured polymers confirmed good cell attachment and growth of smooth muscle cells (C2C12 myoblast cells). Importantly, oriented cell growth was observed after culturing myoblast cells for 3 days. The in vitro degradation in PBS indicates that the mild cured polymers follow a first order reaction kinetics and have degradation rate constants in the range of 0.009-0.038 h(-1), depending on the relative proportions of monomers. Overall, the results of our study indicate that the physical properties can be tailored by varying the composition of the monomers and curing conditions in the newly developed polyesters. Hence, they may be used as potential substrates for tissue engineering scaffolds and for localized drug delivery.
Resumo:
Nanodendritic Pd is electrodeposited on poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode. Electrodeposited Pd is non-dendritic in the absence of PEDOT. The electrooxidation of C-3-aliphatic alcohols, namely, propanol (PA), 1,2- propanediol (1, 2-PD), 1, 3-propanediol (1, 3-PD), and glycerol (GL) is studied in 1.0 M NaOH. The catalytic activity of nanodendritic Pd is greater than that of non-dendritic Pd for oxidation of the four alcohols molecules. Among those molecules the oxidation rate increases as: PA< 1, 2-PD < 1, 3-PD < GL. The cyclic voltammetric oxidation current peak appearing in the reverse direction of the sweep is greatly influenced by the nature of alcohol. The reduction of oxide film on Pd surface is attributed to affect the magnitude of backward peak current density. The amperometry and repeated cyclic voltammetry data suggest a high stability of nanodendritic Pd in alkaline medium. Glycerol is expected to be an appropriate alcohol for application as a fuel in alkaline fuel cells at nanodendritic electrodeposited Pd.
Resumo:
A series of polyesters based on 2-propargyl-1,3-propanediol or 2,2-dipropargyl-1,3-propanediol or 2-allyl-2-propargyl-1,3-propanediol and 1,20-eicosanedioic acid were prepared by solution polycondensation using the corresponding diacid chloride; these polyesters were quantitatively ``clicked'' with a fluoroalkyl, azide, namely CF3(CF2)(7)CH2CH2N3, to yield polyesters carrying long-chain alkylene segments in the backbone and either one or two perfluoroalkyl segments located at periodic intervals along the polymer chain. The immiscibility of the alkylene and fluoroalkyl segments causes the polymer chains to fold in a zigzag fashion to facilitate the segregation of these segments; the folded chains further organize in the solid state to form a lamellar structure with alternating domains of alkyl (HC) and fluoroalkyl (FC) segments. Evidence for the self-segregation is provided by DSC, SAXS, WAXS, and TEM studies; in two of the samples, the DSC thermograms showed two distinct endotherms associated with the melting of the individual domains, while the WAXS patterns confirm the existence of two separate peaks corresponding to the interchain distances within the crystalline lattices of the HC and FC domains. SAXS data, on the other hand, reveal the formation of an extended lamellar morphology with an interlamellar spacing that matches reasonably well with those estimated from TEM studies. Interestingly, a smectic-type liquid crystalline phase is observed at temperatures between the two melting transitions. These systems present a unique opportunity to develop interesting nanostructured polymeric materials with precise control over both the domain size and morphology; importantly, the domain sizes are far smaller than those typically observed in traditional block copolymers.
Resumo:
In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 degrees C, which increases to 17 degrees C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 degrees C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.
Resumo:
The objective of this work was to develop a versatile strategy for preparing biodegradable polymers with tunable properties for biomedical applications. A family of xylitol-based cross-linked polyesters was synthesized by melt condensation. The effect of systematic variation of chain length of the diacid, stoichiometric ratio, and postpolymerization curing time on the physicochemical properties was characterized. The degradation rate decreased as the chain length of the diacid increased. The polyesters synthesized by this approach possess a diverse spectrum of degradation (ranging from similar to 4 to 100% degradation in 7 days), mechanical strength (from 0.5 to similar to 15 MPa) and controlled release properties. The degradation was a first-order process and the rate constant of degradation decreased linearly as the hydrophobicity of the polyester increased. In controlled release studies, the order of diffusion increased with chain length and curing time. The polymers were found to be cytocompatible and are thus suitable for possible use as biodegradable polymers. This work demonstrates that this particular combinatorial approach to polymer synthesis can be used to prepare biomaterials with independently tunable properties.
Resumo:
The purpose of this work was to develop a family of crosslinked poly(xylitol adipate salicylate)s with a wide range of tunable release properties for delivering pharmacologically active salicylic acid. The synthesis parameters and release conditions were varied to modulate polyester properties and to understand the mechanism of release. Varying release rates were obtained upon longer curing (35% in the noncured polymer to 10% in the cured polymer in 7 days). Differential salicylic acid loading led to the synthesis of polymers with variable cross-linking and the release could be tuned (100% release for the lowest loading to 30% in the highest loading). Controlled release was monitored by changing various factors, and the release profiles were dependent on the stoichiometric composition, pH, curing time, and presence of enzyme. The polymer released a combination of salicylic acid and disalicylic acid, and the released products were found to be nontoxic. Minimal hemolysis and platelet activation indicated good blood compatibility. These polymers qualify as ``bioactive'' and ``resorbable'' and can, therefore, find applications as immunomodulatory resorbable biomaterials with tunable release properties.
Resumo:
Unlike conventional polymeric drug delivery systems, where drugs are entrapped in polymers, this study focuses on the incorporation of the drug into the polymer backbone to achieve higher loading and sustained release. Crosslinked, biodegradable, xylitol based polyesters have been synthesized in this study. The bioactive drug moiety, p-aminosalicylic acid (PAS), was incorporated in xylitol based polyesters to impart its anti-mycobacterial activity. To understand the influence of the monomer chemistry on the incorporation of PAS and its subsequent release from the polymer, different diacids have been used. Controlled release profiles of the drug from these polyesters were studied under normal physiological conditions. The degradation of the polyesters varied from 48% to 76% and the release of PAS ranged from 54% to 65% of its initial loading in 7 days. A new model was developed to explain the release kinetics of PAS from the polymer that accounted for the polymer degradation and drug concentration. The thermal, mechanical, drug release and cytocompatibility properties of the polymers indicate their suitability in biomedical applications. The released products from these polymers were observed to be pharmacologically active against Mycobacteria. The high drug loading and sustained release also ensured enhanced efficacy. These polymers form biocompatible, biodegradable polyesters where the sustained release of PAS may be tailored for potential treatment of mycobacterial infections. Statement of significance In the present work, we report on novel polyesters with p-aminosalicylic acid (PAS) incorporated in the polymer backbone. The current work aims to achieve controlled release of PAS and ensures the delivered PAS is stable and pharmacologically active. The novelty of this work primarily involves the synthetic chemistry of polymerization and detailed analysis and efficacy of active PAS delivery. A new kinetic model has been developed to explain the PAS release profiles. These polymers are biodegradable, cytocompatible and anti-mycobacterial in nature. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Selective introduction and removal of protecting groups is of great significance in organic synthesis.l The benzyl ether function is one of the most common protecting groups for alcohols. Selective oxidative removal of the 4-methoxybenzyl (MPM) ethers in the presence of benzyl ethers made the MPM moiety an alternative protecting group, and its utility in carbohydrate chemistry is well established. Several procedures have been developed for the cleavage of the 4-methoxybenzyl moiety, e.g. DDQ oxidation (eq 1),2e lectrochemical ~xidationh,~om ogeneous electron t r a n~f e rp,~ho toinduced single electron t r an~f e rb,o~ro n trichloride-dimethyl sulfide,6e tc. However, in all these methods isolation of the alcohol from the inevitable byproduct, 4-methoxybenzaldehyde [also dichlorodicyanohydroquinone (DDHQ) in the most commonly used method employing DDQI can be troublesome. Recently Wallace and Hedgetts7 discovered that acetic acid at 90 "C cleaves the aromatic MPM ethers into the corresponding phenols and 4-methoxybenzyl acetate (eq 21, whereas the aliphatic MPM ethers generated, instead of alcohols, the corresponding acetates (eq 3). Complimentary to this methodology, herein we report that sodium cyanoborohydride and boron trifluoride etherate reductively cleaves, cleanly and efficiently, the aliphatic MPM ethers to an easily separable mixture of the corresponding alcohols and 4-methylanisole
Resumo:
An indigenous electron energy loss spectrometer has been designed and fabricated for the study of free molecules. The spectrometer enables the recording of low-resolution electronic spectra of molecules inthe vapour phase with ready access to the vacuum ultraviolet region. Electron energy loss spectra of aliphatic alcohols and carbonyl compounds as wellas of benzene derivatives have been recorded with the indigenous spectrometer and the electronic transitions in these molecules discussed.
Resumo:
The formal charge distributions in and the dipole moments of some organophosphines and arsines have been calculated, and the dipole moments of (p-chlorophenyl)dichlorophosphine (2.28 D) and (p-bromophenyl)dichlorophosphine (2.04 D) have been determined in benzene at 35° C. The differences between the observed and the calculated moments are explained in terms of dπ---pπ back-bonding and hyperconjugative effects in alkylhaloarsines. The mesomeric effects operating in the aromatic systems are evaluated by comparing the moments with those for the corresponding aliphatic systems. In unsaturated compounds the differences are attributed to mesomeric effects involving the expansion of arsenic valence shell.
Resumo:
Analysis of the 1H NMR spectra of several monothiocarbonohydrazones, some of them synthesized for the first time, shows that they exist as two structural isomers. Whereas, in general, the derivatives of aromatic aldehydes conform to a linear structure, the aliphatic carbonyl derivatives conform to heterocyclic or linear structures, depending on the size of the substituent groups. This dual behaviour is explained in terms of extended conjugation and steric hindrance.
Resumo:
Poly(styrene peroxide) has been prepared and characterized. Nuclear magnetlc resonance (NMR) spectra Of the polymer show the shift Of aliphatic protons. Differential scanning calorimetric (DSC) and differential thermal analysis (DTA) results show anexothermic peak around 110 OC which is characteristic of peroxide decomposition.
Resumo:
Carbon particles synthesized by acetylene pyrolysis in a porous graphite reactor have been investigated. The intimate chemical and physical structures of the particles were probed by proton nuclear magnetic resonance spectroscopy, infrared Fourier transform spectroscopy and X-ray diffraction. The analysis points towards a chemical structure composed of soluble low-mass aromatics surrounding small insoluble larger aromatic islands bridged by aliphatic groups. The diffraction profile indicates that the particles are mostly amorphous with small crystalline domains of not, vert, similar6.5 Å composed of a few stacked graphene layers. The properties of these particles are compared with these obtained with other types of production methods such as laser pyrolysis and combustion flames. The results are briefly discussed in the context of the evolution of infrared interstellar emitters. Possible uses of the reactor are proposed.
Resumo:
Sensing characteristics of few-layer graphenes for NO2 and humidity have been investigated with graphene samples prepared by the thermal exfoliation of graphitic oxide, conversion of nanodiamond (DG) and arc-discharge of graphite in hydrogen (HG). The sensitivity for NO2 is found to be highest with DG. Nitrogen-doped HG (n-type) shows increased sensitivity for NO2 compared with pure HG. The highest sensitivity for humidity is observed with HG. Sensing characteristics of graphene have been examined for different aliphatic alcohols and the sensitivity is found to vary with the chain length and branching.