92 resultados para AL2O3 POWDERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine powders of TiO2 (rutile) with high degree of crystallinity are formed from aqueous titanium oxychloride solution under hydrothermal conditions at 160–230°C and 15–100 kg/cm2 for 1–2 hours. The anatase phase is produced from the same medium when sulfate ion impurity is present, with Image . Both these fine powders are converted to BaTiO3, SrTiO3 or CaTiO3 when suspended in Ba(OH)2 or Sr(OH)2 solution or in an aqueous slurry of carbonate-free CaO with Image , at 180–280°C and 12–65 kg/cm2 for 4–8 hours. The resulting fine powders contain monocrystallites of the perovskite phase with 0.1–1.5 μm particle size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The often discussed role of surface hydroxylation of TiO2 particles as an essential characterestics for their photocatalytic activity can be verified by preparing TiO2 powders by hydrothermal method since hydroxylated surface layers will be better retained on these particles formed in superheated water. Thus, fine powders of TiO2 (rutile) with high degree of crystallinity are formed from titanium oxychloride in the mixed solvent of water and 2-propanol at 160–230°C and 20–120 atm. The anatase phase is produced from the same medium when sulfate ion impurity is present, with Image . TiO2 powders are washed free of anions and 2-propanol by ultrafiltration and are Pt mounted by a photochemical method. Aqueous suspensions of both forms of TiO2 neither as such nor after Pt-loading, do not produce H2 on band gap illumination whereas, H2 is generated in presence of hole scavengers such as EDTA, TEOA, sulfite or hypophosphite. The effects of hole scavenger concentration, Pt : TiO2 ratio, particulate suspension density and the nature of hole scavengers on H2 production are presented. Platinised rutile powders are equally active as anatase in sacrificial systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Octahedrally coordinated CoII and MoIV species are present on the surfaces of sulfided Co-Mo-Al2O3 catalysts used for hydrodesulfurization. They were characterized by XPE, EXAFS and XANES data. An excess of sulfur in the surface species can be explained in terms of the presence of S[stack 22 ] ions. Disulfide bridges could play a role in the hydrodesulfurization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry sliding wear behavior of die-cast ADC12 aluminum alloy composites reinforced with short alumina fibers were investigated by using a pin-on-disk wear tester. The Al2O3 fibers were 4 mu m in diameter and were present in volume fractions (T-f)ranging from 0.03 to 0.26, The length of the fiber varied from 40 to 200 mu m. Disks of aluminum-alumina composites were rubbed against a pin of nitrided stainless steel SUS440B with a load of 10 N at a sliding velocity of 0.1 m/s. The unreinforced ADC 12 aluminum alloy and their composites containing low volume fractions of alumina (V-f approximate to 0.05) showed a sliding-distance-dependent transition from severe to mild wear. However, composites containing high volume fractions of alumina ( V-f > 0.05) exhibited only mild wear for all sliding distances. The duration of occurrence of the severe wear regime and the wear rate both decrease with increasing volume fraction. In MMCs the wear rate in the mild wear regime decreases with increase in volume fraction: reaching a minimum value at V-f = 0.09 Beyond V-f = 0.09 the wear rate increasesmarginally. On the other hand, the wear rate of the counterface (steel pin) was found to increase moderately with increase in V-f. From the analysis of wear data and detailed examination of (a) worn surfaces, (b) their cross-sections and (c) wear debris, two modes of wear mechanisms have been identified to be operative, in these materials and these are: (i) adhesive wear in the case of unreinforced matrix material and in MMCs with low Vf and (ii) abrasive wear in the case of MMCs with high V-f. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine powders of extra pure Ti1−xSnxO2, where o < x < 1, prepared by the hydrothermal method are pale yellow in color. They show photocatalytic activity after platinization, in the visible light (420–550 nm) for H2-production from aqueous solutions containing sacrificial donors such as hypophosphite. The spectral sensitization is shown to be due to peroxotitanium species in the rutile-type structure. Peroxide ion, O22−, arises from the dimerization of O−, the hole centres, produced during the disproportionative decomposition of residual hydroxyls: OH− = O− + H. Higher OH contents in TixSnxO2 is due to the amphoteric chemistry of oxocompounds of tin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed evaluation of size, shape and microstrains of BaTiO3 crystallites produced by hydrothermal crystallization at 90 – 180 °C and 0.1 – 1.2 MPa, from amorphous TiO2· xH2O (3 < × < 8) gel and aqueous Ba(OH)2 is presented, using X-ray line-broadening and TEM studies. Whereas the concentration of Ba(OH)2 and the acceptor impurities affect the crystallite shape, the stoichimetry with respect to Ba/Ti, donor as well as acceptor impurities, and the temperature of crystallization influence the microstrains. It is shown that strains in the crystallites are related to the point defects in the lattice. Compensation of the residually present hydroxyl ions in the oxygen sublattice by cation vacancies results in strains leading to metastable presence of the cubic phase at room temperature. Studies on the diffuse phase transition behaviour of these submicron powders show that the stable tetragonal phase is produced only on annealing at high temperatures where the mobility of cations vacancies are larger. Heat-treatment reduces anisotropy and strain in undoped samples, whereas annealing is less effective in doped materials. Comparison of the crystillite size by TEM showed better agreement with the Warren—Averbach method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A creep resistant permanent mould cast Mg alloy MRI 230D was laser surface alloyed with Al and a mixture of Al and Al2O3 using pulsed Nd:YAG laser irradiation at four different scan speeds in order to improve the corrosion and wear resistance. The microstructure, corrosion and wear behavior of the laser surface alloyed material is reported in this manuscript. The coating comprised of a featureless microstructure with cellular-dendritic microstructure near the interface and exhibited good interfacial bonding. A few solidification cracks reaching down to substrate were also observed. The two step coating with Al followed by a mixture of Al and Al2O3 exhibited a slightly better corrosion resistance than the single step coating with Al. In the long run, however, corrosion resistance of both the coatings became comparable to the as-cast alloy. The corroded surface of the laser surface alloyed specimens revealed a highly localized corrosion. The laser surface alloyed specimens exhibited an improvement in wear resistance. The laser scan speed did not exhibit a monotonic trend either in corrosion or wear resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times, there has been an ever-growing need for polymer-based multifunctional materials for electronic packaging applications. In this direction, epoxy-Al2O3 nanocomposites at low filler loadings can provide an excellent material option, especially from the point of view of their dielectric properties. This paper reports the dielectric characteristics for such a system, results of which are observed to be interesting, unique, and advantageous as compared to traditionally used microcomposite systems. Nanocomposites are found to display lower values of permittivity/tan delta over a wide frequency range as compared to that of unfilled epoxy. This surprising observation has been attributed to the interaction between the epoxy chains and the nanoparticles, and in this paper this phenomenon is analyzed using a dual layer interface model reported for polymer nanocomposites. As for the other dielectric properties associated with the nanocomposites, the nano-filler loading seems to have a significant effect. The dc resistivity and ac dielectric strength of the nanocomposites were observed to be lower than that of the unfilled epoxy system at the investigated filler loadings, whereas the electrical discharge resistant properties showed a significant enhancement. Further analysis of the results obtained in this paper shows that the morphology of the interface region and its characteristics decide the observed interesting dielectric behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ EXAFS investigations have been carried out on Ni/γ-Al2O3 and Cu---Ni/γ-Al2O3 catalysts with different metal loadings, and prepared by different procedures. As-prepared Ni/γ-Al2O3 on calcination gives NiO and NiAl2O4-like phases on the surface, the proportion of the latter increasing with the increase in calcination temperature; the proportion of the NiO-like phase, on the other hand, increases with the metal loading. The reducibility of Ni/γ-Al2O3 to give metallic Ni on the surface directly depends on the proportion of the NiO-like phase present before reduction. Co-impregnating with Cu suppresses the formation of the surface aluminate and thereby favours the reduction to metallic Ni. This conclusion is clearly substantiated by our studies of bimetallic catalysts containing varying Cu/Ni ratios and also those prepared by the two-stage impregnation procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of liquid Al–Mg–Si alloys at 900–1400 °C was studied by thermogravimetric analysis (TGA). The development of a semi-protective surface layer of MgO/MgAl2O4 allows the continuous formation of an Al2O3-matrix composite containing an interpenetrating network of metal microchannels at 1000–1350 °C. An initial incubation period precedes bulk oxidation, wherein Al2O3 grows from a near-surface alloy layer by reaction of oxygen supplied by the dissolution of the surface oxides and Al supplied from a bulk alloy reservoir through the microchannel network. The typical oxidation rate during bulk growth displays an initial acceleration followed by a parabolic deceleration in a regime apparently limited by Al transport to the near-surface layer. Both regimes may be influenced by the Si content in this layer, which rises due to preferential Al and Mg oxidation. The growth rates increase with temperature to a maximum at ~1300 °C, with a nominal activation energy of 270 kJ/mole for an Al-2.85 wt. % Mg-5.4 wt. % Si alloy in O2 at furnace temperatures of 1000–1300 °C. An oscillatory rate regime observed at 1000–1075 °C resulted in a banded structure of varying Al2O3-to-metal volume fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three compounds have been found to be stable in the pseudobinary system Na2O---(α)Al2O3 between 825 and 1400 K; two nonstoichiometric phases, β-alumina and β″-alumina, and NaAlO2. The homogeneity of β-alumina ranges from 9.5 to 11 mol% Na2O, while that of β″-alumina from 13.3 to 15.9 mol% Na2O at 1173 K. The activity of Na2O in the two-phase fields has been determined by a solid-state potentiometric technique. Since both β- and β″-alumina are fast sodium ion conductors, biphasic solid electrolyte tubes were used in these electrochemical measurements. The open circuit emf of the following cells were measured from 790 to 980 K: [GRAPHICS] The partial molar Gibbs' energy of Na2O relative to gamma-Na2O in the two-phase regions can be represented as: DELTA-GBAR(Na2O)(alpha- + beta-alumina) = -270,900 + 24.03 T, DELTA-GBAR(Na2O)(beta- + beta"-alumina) = -232,700 + 56.19 T, and DELTA-GBAR(Na2O)(beta"-alumina + NaAlO2) = -13,100 - 4.51 T J mol-1. Similar galvanic cells using a Au-Na alloy and a mixture of Co + CoAl(2+2x)O4+3x + (alpha)Al2O3 as electrodes were used at 1400 K. Thermodynamic data obtained in these studies are used to evaluate phase relations and partial pressure of sodium in the Na2O-(alpha) Al2O3 system as a function of oxygen partial pressure, composition and temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we examine the unusual plastic deformation under uniaxial compression of an Al2O3-15 mol % Y2O3 (A15Y) glass synthesized by a wet chemical route At a low temperature of 650-725 degrees C, plastic deformation of this glass is largely non-viscous through shear instabilities In contrast deformation near the crystallization temperature (850 degrees C) occurs homogeneously with work hardening and with a monotonic increase in the true density of the glass by 10-12% accompanied by an increase in hardness (H) and elastic modulus (E) of up to 100% We hypothesize a phenomenon of molecular densification of the amorphous structure through a hierarchy of multiple phases, analogous to density- or entropy-driven amorphous to-amorphous phase transitions (polyamorphism) These results suggest that the present method of preparation and the unusual behavior can trigger a search for many more systems that display such behavior (C) 2010 Acta Materialia Inc Published by Elsevier Ltd All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine-particle metal chromites (MCr2O4, where M = Mg, Ca, Mn, Fe, Co, Ni, Cu, and Zn) have been prepared by the combustion of aqueous solutions containing the respective metal nitrate, chromium(III) nitrate, and urea in stoichiometric amounts. The mixtures, when rapidly heated to 350°C, ignite and yield voluminous chromites with surface areas ranging from 5 to 25 m2/g. MgCr2O4, sintered in air at 1500°C for 5 h, has a density of 4.0 g/cm3.