148 resultados para AISI 4130 aeronautical steel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is an attempt to study crack initiation in nuclear grade, 9Cr-1Mo ferritic steel using AE as an online NDE tool. Laboratory experiments were conducted on 5 heat treated Compact Tension (CT) specimens made out of nuclear grade 9Cr-1Mo ferritic steel by subjecting them to cyclic tensile load. The CT Specimens were of 12.5 mm thickness. The Acoustic emission test system was setup to acquire the data continuously during the test by mounting AE sensor on one of the surfaces of the specimen. This was done to characterize AE data pertaining to crack initiation and then discriminate the samples in terms of their heat treatment processes based on AE data. The AE signatures at crack initiation could conclusively bring to fore the heat treatment distinction on a sample to sample basis in a qualitative sense.Thus, the results obtained through these investigations establish a step forward in utilizing AE technique as an on-line measurement tool for accurate detection and understanding of crack initiation and its profile in 9Cr-1Mo nuclear grade steel subjected to different processes of heat treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stainless steel of type AISI 316LN - one of the structural materials of fast neutron reactors - must have a long service life under conditions that subject it to different types of wear (galling, adhesion, fretting, and abrasion). Cobalt-based hard facings are generally avoided due to induced radioactivity. Nickel-based hard facings are strongly preferred instead. One alternative to both types of coatings is a hard-alloy coating of CrN. This article examines wear and friction characteristics during the sliding of uncoated steel SS316LN and the same steel with a CrN coating. In addition, a specially designed pin-on-disk tribometer is used to perform tests in a vacuum at temperatures of up to 1000 degrees C in order to study the effect of oxygen on the wear of these materials. The morphology of the wear surface and the structure of the subsurface were studied by scanning electron microscopy. The formation of an adhesion layer and the self-welding of mating parts are seen to take place in the microstructure at temperatures above 500 degrees C. It is also found that steel SS316LN undergoes shear strain during sliding wear. The friction coefficient depends on the oxygen content, load, and temperature, while the wear rate depends on the strain-hardening of the surface of the material being tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of conventional fuels such as Jet-A1 (aviation kerosene) and diesel with bio-derived components, referred to as biofttels, are gradually replacing the conventional fuels in aircraft and automobile engines. There is a lack of understanding on the interaction of spray drops of such biofuels with solid surfaces. The present study is an experimental investigation on the impact of biofuel drops onto a smooth stainless steel surface. The biofuel is a mixture of 90% commercially available camelina-derived biofuel and 10% aromatics. Biofuel drops were generated using a syringe-hypodermic needle arrangement. On demand, the needle delivers an almost spherical drop with drop diameter in the range 2.05-2.15 mm. Static wetting experiments show that the biofuel drop completely wets the stainless steel surface and exhibits an equilibrium contact angle of 5.6. High speed video camera was used to capture the impact dynamics of biofuel drops with Weber number ranging from 20 to 570. The spreading dynamics and maximum spreading diameter of impacting biofuel drops on the target surface were analyzed. For the impact of high Weber number biofuel drops, the spreading law suggests beta similar to tau(0.5) where beta is the spread factor and tau, the nondimensionalized time. The experimentally observed trend of maximum spread factor, beta(max) of camelina biofuel drop on the target surface with We compares well with the theoretically predicted trend from Ukiwe-Kwok model. After reaching beta(max), the impacting biofuel drop undergoes a prolonged sluggish spreading due to the high wetting nature of the camelina biofuel-stainless steel system. As a result, the final spread factor is found to be a little more than beta(max). (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper highlights the microstructural features of commercially available interstitial free (IF) steel specimens deformed by equal channel angular pressing (ECAP) up to four passes following the route A. The microstructure of the samples was studied by different techniques of X-ray diffraction peak profile analysis as a function of strain (epsilon). It was found that the crystallite size is reduced substantially already at epsilon=2.3 and it does not change significantly during further deformation. At the same time, the dislocation density increases gradually up to epsilon=4.6. The dislocation densities estimated from X-ray diffraction study are found to correlate very well with the experimentally obtained yield strength of the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a microstructure in 304L stainless steel during industrial hot-forming operations, including press forging (mean strain rate of 0.15 s(-1)), rolling/extrusion (2-5 s(-1)), and hammer forging (100 s(-1)) at different temperatures in the range 600-1200 degrees C, was studied with a view to validating the predictions of the processing map. The results have shown that excellent correlation exists between the regimes exhibited by the map and the product microstructures. 304L stainless steel exhibits instability bands when hammer forged at temperatures below 1100 degrees C, rolled/extruded below 1000 degrees C, or press forged below 800 degrees C. All of these conditions must be avoided in mechanical processing of the material. On the other hand, ideally, the material may be rolled, extruded, or press forged at 1200 degrees C to obtain a defect-free microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, ion nitriding of Maraging steel (250 grade) has been carried out at three different temperatures i.e., at 435 degrees C, 450 degrees C and 465 degrees C for 10 h duration in order to achieve good wear resistance along with high strength required for the slat track component of aircraft. The microstructure of the base material and the nitrided layer was examined by optical and scanning electron microscope, and various phases present were determined by X-ray diffraction. Various properties, such as, hardness, case depth, tensile, impact, fatigue properties and corrosion resistance were investigated for both un-nitrided and ion-nitrided materials. It is observed that the microstructure of the core material remains unaltered and Fe4N is formed in the hardened surface layer after ion nitriding at all the three temperatures employed. Surface hardness increases substantially after ion nitriding. Surface hardness remains almost the same but case depth increases with the increase in ion nitriding temperature due to greater diffusivity at higher temperatures. Tensile strength, fatigue strength and corrosion resistance are improved but ductility and energy absorbed in impact test decrease on ion nitriding. These results are explained on the basis of microstructural observations. The properties obtained after ion nitriding at 450 degrees C for 10 h are found to be optimum when compared to the other two ion nitriding temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled monolayers of fatty acids were formed on stainless steel by room-temperature solution deposition. The acids are covalently bound to the Surface as carboxylate in a bidentate manner. To explore the effect Of Saturation in the carbon backbone on friction in sliding tribology, we Study the response of saturated stearic acid (SA) and unsaturated linoleic acid (LA) as self-assembled monolayers using lateral force microscopy and nanotribometry and when the molecules are dispersed in hexadecane, using pin-on-disc tribometry. Over a very wide range (10 MPa-2.5 GPa) of contact pressures it is consistently demonstrated that the unsaturated linoleic acid molecules yield friction which is significantly lower than that of the saturated stearic acid. it is argued, using density functional theory predictions and XPS of slid track, that when the molecular backbone of unsaturated fatty acids are tilted and pressed strongly by a probe, in tribological contact, the high charge density of the double bond region of the backbone allows coupling with the steel Substrate. The interaction yields a low friction carboxylate soap film on the substrate. The saturated fatty acid does not show this effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near threshold fatigue crack growth behavior of a high strength steel under different temper levels was investigated. It is found that the observed variations in ΔKth could predominantly be attributed to roughness induced crack closure. The closure-free component of the threshold stress intensity range, ΔKeff,th showed a systematic variation with monotonic yield strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En 52 steel has been electroslag refined and the resultant effects of refining on its mechanical properties have been assessed. It was found that refining caused a decrease in fatigue crack growth rates and increases in fatigue strength, fracture toughness, Charpy fracture energy and tensile ductility. Fatigue crack growth rates in region I and in region III were found to be considerably lower in the electroslag refined steel: they were unaffected in region II. The fracture toughness values for the electroslag refined steel are nearly twice those estimated for the unrefined steel. Measurements on heat-treated samples have shown that the electroslag refined steel has a better response to heat-treatment. The improvement in the mechanical properties is explained in terms of the removal of nonmetallic inclusions and a reduction in the sulphur content of the steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of dephosphorisation is governed by the thermodynamic behaviour of phosphorus and oxygen in molten metal, and P2O5 and FeO in slag. The equilibrium distribution of phosphorus and oxygen, for a wide range of chemical compositions simulating the evolution of slag composition during a typical BOF blow, has been experimentally determined. A mathematical model for estimation of the activity coefficients, as a function of the chemical composition, was also attempted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The changes in the tensile properties and fracture mode brought about by heat treatment of Fe-12Cr-6Al ferritic stainless steel have been studied. A favourable combination of high strength and good ductility is obtained by heating the material at 1370 K for 2 h followed by a water quench. The high-temperature treatment results in carbide dissolution as well as an increase in the grain size. The mechanism of strengthening has been evaluated from the apparent activation energy (28 kJ mol–1) and is identified to be the unpinning of dislocations from the atmosphere of carbon atoms. As the heat-treatment temperature is increased, the fracture behaviour changes from ductile to brittle mode and this is related to the changes in grain size and friction stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, sliding experiments were conducted using pure magnesium pins against steel plates using an inclined pin-on-plate sliding tester. The inclination angle of the plate was varied in the tests and for each inclination angle, the pins were slid both perpendicular and parallel to the unidirectional grinding marks direction under both dry and lubricated conditions. SEM was used to study morphology of the transfer layer formed on the plates. Surface roughness of plates was measured using an optical profilometer. Results showed that the friction, amplitude of stick-slip motion and transfer layer formation significantly depend on both inclination angle and grinding marks direction of the plates. These variations could be attributed to the changes in the level of plowing friction taking place at the asperity level during sliding.