38 resultados para 453
Resumo:
(1S,4R,5R,8S, IOR,12S)-4-Hydroxy-15,16-epoxycleroda-2,13 (16), 14-trieno- 17,12:18,1-biscarbolactone,C20H2206, Mr = 358.2, m.p. = 453-454 K,orthorhombic, P212121, a = 7.3869 (6), b = 11.986 (1),c=19.896(2) A, V=1761.65A 3, Z=4, D x=1.351, Din(by flotation)= 1.349gem -3, 2(CuKa)=1.5418 A, /l = 8.36 cm -1, F(000) = 760, T= 295 K,R = 0.0432 for 1662 observed reflections. Two terpenerings, two ~-lactones, two methyl groups, a tertiary hydroxyl group and a fl-substituted furan ring are present in the structure. The H atoms at C(12) and C(8) are a- and fl-oriented. The terpene ring A is locked into a boat conformation by the C(1)-C(4) lactone bridge. The furan ring is attached equatoriaUy at atom C(12). The hydroxyl group is involved in intramolecular hydrogen bonding.
Resumo:
We establish the Poincaré invariance of anomalous gauge theories in two dimensions, for both the Abelian and non-Abelian cases, in the canonical Hamiltonian formalism. It is shown that, despite the noncovariant appearance of the constraints of these theories, Poincaré generators can be constructed which obey the correct algebra and yield the correct transformations in the constrained space.
Resumo:
We present the results of molecular-dynamics simulations of systems of dumbbell molecules confined by parallel molecular walls. We have carried out systematic studies of three cases: freezing, steady flows, and stick-slip friction. We find that the molecular orientational degrees of freedom cause the surface layers to deviate from a planar configuration. Nevertheless, steady flows, in a channel as narrow as 15 molecular sizes, display continuum behavior. A range of mechanisms in the dynamics of the freezing of a confined fluid is found, as a function of the wall-fluid interactions and the bond length of the dumbbell molecules. The simple order-disorder transition associated with stick-slip motion in the presence of a layer of monoatomic lubricant molecules is supplanted by more complex behavior due to rotational degrees of freedom of the diatomic molecules.
Resumo:
Naturally occurring zircon sand was plasma spray coated on steel substrates previously coated with NiCrAlY bond coat. The coatings were characterized for their microstructure, chemical composition, thermal shock resistance, and the nature of structural phases present, The as-sprayed coatings consisted of t-ZrO2 (major phase), m-ZrO2, ZrSiO4 (minor phases), and amorphous SiO2. These coatings, when annealed at 1200 degrees C/1.44 x 10(4) s yielded a ZrSiO4 phase as a result of the reaction between ZrO2 and SiO2, Dramatic changes occurred in the characteristics of the coatings when a mixture of zircon sand and Y2O3 was plasma spray coated and annealed at 1400 degrees C/1.44 x 10(4) s, The t-ZrO2 phase was completely stabilized, and these coatings were found to have considerable potential for thermal barrier applications.
Resumo:
The use of an instrumented impact test set-up to evaluate the influence of water ingress on the impact response of a carbon–epoxy (C–E) laminated composite system containing discontinuous buffer strips (BS) has been examined. The data on the BS-free C–E sample in dry conditions are used as reference to compare with the data derived from those immersed in water. The work demonstrated the utility of an instrumented impact test set-up in characterising the response, first owing to the architectural difference due to introduction of buffer strips and then due to the presence of an additional phase in the form of water ingressed into the sample. The presence of water was found to enhance the energy absorption characteristics of the C–E system with BS insertions. It was also noticed that with an increasing number of BS layer insertions, the load–time plots displayed characteristic changes. The ductility indices (DI) were found to display a lower value for the water immersed samples compared to the dry ones.
Resumo:
Military establishments are omnipresent if not everywhere omnipotent. While these costly bureaucracies are the bane of finance ministers around the world, they do provide an important opportunity for comparative analysis. This paper examines a military system—the Indian one—through time, and attempts to demonstrate the changing relationship of that system to Indian politics and society in general, and to the low-caste communities of India in particular. We select the low-caste untouchables because they represent an extreme challenge to the integrative capacity of both political and social systems, and because they have recently been the subject of intensive political and academic concern.Stephen P. Cohen is Assistant Professor of Political Science in Asian Studies at the University of Illinois. Research for this paper was supported by a fellowship from the American Institute of Indian Studies in 1964–65.
Resumo:
The photocatalytic antibacterial activity of Ag impregnated combustion synthesized TiO(2) (0.25 g/L) was studied against Escherichia coil in presence of UV irradiation. The effect of various parameters, such as anions, canons, hydrogen peroxide and pH, on the photocatalytic inactivation was investigated. The addition of inorganic ions showed a negative effect on inactivation. Among anions, the presence of chloride ions was observed to have a maximum negative effect and reduced the inactivation considerably. Among cations, the bacterial inactivation reduced significantly in the presence of Ca(2+) ions. Hydrogen peroxide addition in combination with Ag/TiO(2) photocatalysis, however, improved the inactivation. Photocatalysis with high concentration of H(2)O(2) yielded complete bacterial inactivation within few minutes. The photocatalytic inactivation of E. coil was not affected by variation in pH. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: There was a low adherence to influenza A (H1N1) vaccination program among university students and health care workers during the pandemic influenza in many parts of the world. Vaccination of high risk individuals is one of the recommendations of World Health Organization during the post-pandemic period. It is not documented about the student's knowledge, attitude and willingness to accept H1N1 vaccination during the post-pandemic period. We aimed to analyze the student's knowledge, attitude and willingness to accept H1N1 vaccination during the post-pandemic period in India. Methods: Vaccine against H1N1 was made available to the students of Vellore Institute of Technology, India from September 2010. The data are based on a cross-sectional study conducted during October 2010 to January 2011 using a self-administered questionnaire with a representative sample of the student population (N = 802). Results: Of the 802 respondents, only 102/802 (12.7%) had been vaccinated and 105/802 (13%) planned to do so in the future, while 595/802 (74%) would probably or definitely not get vaccinated in the future. The highest coverage was among the female (65/102, 63.7%) and non-compliance was higher among men in the group (384/595; 64.5%) (p < 0.0001). The representation of students from school of Bio-sciences and Bio-technology among vaccinees is significantly higher than that of other schools. Majority of the study population from the three groups perceived vaccine against H1N1 as the effective preventive measure when compared to other preventive measures. 250/595 (42%) of the responders argued of not being in the risk group. The risk perception was significantly higher among female (p < 0.0001). With in the study group, 453/802 (56.4%) said that they got the information, mostly from media. Conclusions: Our study shows that the vaccination coverage among university students remains very low in the post-pandemic period and doubts about the safety and effectiveness of the vaccine are key elements in their rejection. Our results indicate a need to provide accessible information about the vaccine safety by scientific authorities and fill gaps and confusions in this regard.
Resumo:
A significant amount of research on the thermodynamic properties of molten alloys is undertaken for obtaining insights into their structure . The partial and integral molar enthalpies, entropies and volumes of mixing provide some general information on the nature and strength of atomic bonds and the distribution of atoms. However, until recently it has been difficult to derive specific quantitative information because the excess entropy of mixing contains configurational , vibrational , electronic , and sometimes magnetic contributions which cannot be easily separated.
Resumo:
Physical clustering of genes has been shown in plants; however, little is known about gene clusters that have different functions, particularly those expressed in the tomato fruit. A class I 17.6 small heat shock protein (Sl17.6 shsp) gene was cloned and used as a probe to screen a tomato (Solanum lycopersicum) genomic library. An 8.3-kb genomic fragment was isolated and its DNA sequence determined. Analysis of the genomic fragment identified intronless open reading frames of three class I shsp genes (Sl17.6, Sl20.0, and Sl20.1), the Sl17.6 gene flanked by Sl20.1 and Sl20.0, with complete 5' and 3' UTRs. Upstream of the Sl20.0 shsp, and within the shsp gene cluster, resides a box C/D snoRNA cluster made of SlsnoR12.1 and SlU24a. Characteristic C and D, and C' and D', boxes are conserved in SlsnoR12.1 and SlU24a while the upstream flanking region of SlsnoR12.1 carries TATA box 1, homol-E and homol-D box-like cis sequences, TM6 promoter, and an uncharacterized tomato EST. Molecular phylogenetic analysis revealed that this particular arrangement of shsps is conserved in tomato genome but is distinct from other species. The intronless genomic sequence is decorated with cis elements previously shown to be responsive to cues from plant hormones, dehydration, cold, heat, and MYC/MYB and WRKY71 transcription factors. Chromosomal mapping localized the tomato genomic sequence on the short arm of chromosome 6 in the introgression line (IL) 6-3. Quantitative polymerase chain reaction analysis of gene cluster members revealed differential expression during ripening of tomato fruit, and relatively different abundances in other plant parts.
Resumo:
Polyaniline-CaTiO3 nanocomposites with their various weight percentages were prepared by chemical oxidative in situ polymerization technique. The prepared composites were characterized by Fourier transform infrared spectroscopy, scanning electronic microscope, and X-ray diffraction. The temperature-dependent dc conductivity of polyaniline-CaTiO3 nanocomposite was studied within the range of 40-200 degrees C and found that 50 wt% shows high conductivity compared to other composites. Humidity sensor properties of polyaniline-CaTiO3 nanocomposite show better sensing properties and exhibit good linearity in sensing response curve, which discuss the implications of distortions and nonstoichiometry on their physical properties. Among all composites, 50 wt% of polyaniline-CaTiO3 nanocomposites show high sensitivity up to similar to 90% and their response-recovery times are 500 and 453 s, respectively.