47 resultados para 372
Resumo:
A molecular model for substitutional defects in a zincblende lattice has been worked out. The infrared absorption due to A1 in InSb and Li in GaAs are interpreted on the basis of this model.
Resumo:
We present a study of the piezoresistivity in nanostructured. polycrystalline films of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 grown on oxidized Si (100) substrates. We have observed that the hole doped rare-earth manganites, which are well known for being colossal magnetoresistive (CMR) show change in its resistance under uniaxial strain even at room temperature. The piezoresistance was measured at room temperature by bending the Si cantilevers (on which the film is grown) in flexural mode both with compressive and tensile strain. The resistance of the film increases with tensile strain and decreases with compressive strain. A large gauge factor of 15-20 is seen in these films at room temperature.
Resumo:
A computer code is developed as a part of an ongoing project on computer aided process modelling of forging operation, to simulate heat transfer in a die-billet system. The code developed on a stage-by-stage technique is based on an Alternating Direction Implicit scheme. The experimentally validated code is used to study the effect of process specifics such as preheat die temperature, machine ascent time, rate of deformation, and dwell time on the thermal characteristics in a batch coining operation where deformation is restricted to surface level only.
Resumo:
The reactions of the complexes [MI2(CO)3-(NCMe)2] (M = Mo, W) with the diphosphazane ligands RN{P(OPh)2}2 (R = Me, Ph) in CH2Cl2 at room temperature afford new seven-coordinated complexes of the type [MI2(CO)3{P(OPh)2}2NR]. The molybdenum complexes are sensitive to air oxidation even in the solid state, whereas the tungsten complexes are more stable in the solid state and in solution. The structure of the tungsten complex [WI2(CO)3{P(OPh)2}2NPh] has been determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system with the space group Pna 2(1), a = 19.372 (2) angstrom, b = 11.511 (1) angstrom, c = 15.581 (1) angstrom, and Z = 4. Full-matrix least-squares refinement with 3548 reflections (I > 2.5-sigma-(I)) led to final R and R(w) values of 0.036 and 0.034, respectively. The complex adopts a slightly distorted pentagonal-bypyramidal geometry rarely observed for such a type of complexes; two phosphorus atoms of the diphosphazane ligand, two iodine atoms, and a carbonyl group occupy the equatorial plane, and the other two carbonyl groups, the apical positions.
Resumo:
Proper formulation of stress-strain relations, particularly in tension-compression situations for isotropic biomodulus materials, is an unresolved problem. Ambartsumyan's model [8] and Jones' weighted compliance matrix model [9] do not satisfy the principle of coordinate invariance. Shapiro's first stress invariant model [10] is too simple a model to describe the behavior of real materials. In fact, Rigbi [13] has raised a question about the compatibility of bimodularity with isotropy in a solid. Medri [2] has opined that linear principal strain-principal stress relations are fictitious, and warned that the bilinear approximation of uniaxial stress-strain behavior leads to ill-working bimodulus material model under combined loading. In the present work, a general bilinear constitutive model has been presented and described in biaxial principal stress plane with zonewise linear principal strain-principal stress relations. Elastic coefficients in the model are characterized based on the signs of (i) principal stresses, (ii) principal strains, and (iii) on the value of strain energy component ratio ER greater than or less than unity. The last criterion is used in tension-compression and compression-tension situations to account for different shear moduli in pure shear stress and pure shear strain states as well as unequal cross compliances.
Resumo:
Microfluidic devices have been developed for imaging behavior and various cellular processes in Caenorhabditis elegans, but not subcellular processes requiring high spatial resolution. In neurons, essential processes such as axonal, dendritic, intraflagellar and other long-distance transport can be studied by acquiring fast time-lapse images of green fluorescent protein (GFP)-tagged moving cargo. We have achieved two important goals in such in vivo studies namely, imaging several transport processes in unanesthetized intact animals and imaging very early developmental stages. We describe a microfluidic device for immobilizing C. elegans and Drosophila larvae that allows imaging without anesthetics or dissection. We observed that for certain neuronal cargoes in C. elegans, anesthetics have significant and sometimes unexpected effects on the flux. Further, imaging the transport of certain cargo in early developmental stages was possible only in the microfluidic device. Using our device we observed an increase in anterograde synaptic vesicle transport during development corresponding with synaptic growth. We also imaged Q neuroblast divisions and mitochondrial transport during early developmental stages of C. elegans and Drosophila, respectively. Our simple microfluidic device offers a useful means to image high-resolution subcellular processes in C. elegans and Drosophila and can be readily adapted to other transparent or translucent organisms.
Resumo:
Using Ru - SiO2 catalyst, the kinetics of methanation of carbon dioxide has been studied. In the temperature range of 320-460-degrees-C a simple power law model is found to predict experimental results with a good agreement over the range of variables studied.
Resumo:
Sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) is a homotetramer of M(r) 213,000 requiring pyridoxal-5'-phosphate (PLP) as cofactor, Removal of PLP from the holoenzyme converted the enzyme to the apo form which, in addition to being inactive, was devoid of the characteristic absorption spectrum. Upon the addition of PLP to the apoenzyme, complete activity was restored and the visible absorption spectrum with a maximum at 425 nm was regained. The interaction of PLP with the apoenzyme revealed two phases of reaction with pseudo-first-order rate constants of 20 +/- 5 s(-1) and 12.2 +/- 2.0 x 10(-3) s(-1), respectively. However, addition of PLP to the apoenzyme did not cause gross conformational changes as evidenced by circular dichroic and fluorescence spectroscopy. Although conformationally apoenzyme and holoenzyme were indistinguishable, they had distinct apparent melting temperatures of 51 +/- 2 and 58 +/- 2 degrees C, respectively, and the reconstituted holoenzyme was thermally as stable as the native holoenzyme. These results suggested that there was no apparent difference in the secondary structure of holoenzyme, apoenzyme, and reconstituted holoenzyme, However, sedimentation analysis of the apoenzyme revealed the presence of two peaks of S-20,S-w values of 8.7 +/- 0.5 and 5.7 +/- 0.3 S, respectively. A similar pattern was observed when the apoenzyme was chromatographed on a calibrated Sephadex G-150 column. The first peak corresponded to the tetrameric form (M(r) 200,000 +/- 15,000) while the second peak had a M(r) of 130,000 +/- 10,000. Reconstitution experiments revealed that only the tetrameric form of the apoenzyme could be converted into an active holoenzyme while the dimeric form could not be reconstituted into an active enzyme. These results demonstrate that PLP plays an important role in maintaining the structural integrity of the enzyme by preventing the dissociation of the enzyme into subunits, in addition to its function in catalysis. (C) 1996 Academic Press, Inc.
Resumo:
This article presents dimensionless equations for the temperature dependence of the saturated liquid viscosity of R32, R123, R124, R125, R134a, R141b, and R152a valid over a temperature range of engineering interest. The correlation has the form Phi(D)(n)=A+BTD where Phi(D) is the dimensionless fluidity (1/eta(D)) and T-D is a dimensionless temperature. n, A, and B are evaluated for each of the above refrigerants based on a least-squares fit to experimental data. This equation is found to provide an improved fit over those existing in the literature up to T-D=0.8.
Resumo:
Oxovanadium(IV) complexes VO(L)(B)](ClO4) (1-3) of N-2-pyridylmethylidine-2-hydroxyphenylamine (HL) Schiff base and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido3,2-d: 2',3'-f] quinoxaline (dpq in 2) or dipyrido3,2-a: 2',3'-c] phenazine (dppz in 3), were prepared, characterized and their DNA binding property, photo-induced DNA cleavage activity and photocytotoxicity in HeLa cells studied. The crystal structure of 1 shows the presence of a VO2+ moiety in VO2N4 coordination geometry. The complexes show a d-d band at similar to 830 nm in DMF. The complexes display an oxidative V(V)-V(IV) response near 0.5 V versus SCE and a reductive V(IV)/V(III) response near -0.65 V in DMF -0.1 M TBAP. The complexes that are avid binders to CT DNA giving K-b values within 7.1 x 10(4) to 3.2 x 10(5) M-1, do not show any significant chemical nuclease activity in presence of 3-mercaptopropionic acid or glutathione. The dpq and dppz complexes are photocleavers of pUC19 DNA in UV-A light of 365 nm forming both O-1(2) and (OH)-O-center dot radicals and in near-IR light of 785 nm forming (OH)-O-center dot radicals. The dppz complex exhibits photocytotoxicity in visible light in HeLa cells (IC50 = 6.8 mu M). Flow-cytometric study on this complex shows a high sub-G1 phase in light compared to dark indicating PDT effect. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Five new open-framework compounds of gallium have been synthesized by hydrothermal methods and their structures determined by single crystal X-ray diffraction studies. The compounds, C8N4H26]Ga6F4(PO4)(6)], I, C5N3H11]Ga3F2(PO4)(3)]center dot H2O, II, C6N3H19]Ga-4(C2O4)(PO4)(4)(H2PO4)]center dot 2H(2)O, III, Ga2F3(HPO4)(PO4)]center dot 2H(3)O, IV, and C3N2H5](2)Ga-4(H2O)(3)(HPO3)(7)], V, possess three-dimensional structures. All the compounds are formed by the connectivity between the Ga polyhedra and phosphite/phosphate units. The observation of SBU-6 (I and II) and spiro-5 (IV) secondary building units (SBUs) are noteworthy. The flexibility of the formation of gallium phosphate frameworks has been established by the isolation of two related structures (I and II) from the same SBU units but different organic amines. Some of the present structures have close resemblance to the gallium phosphate phases known earlier. The compounds have been characterized by CHN analysis, powder XRD, IR, and TGA. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Activation of the B-H sigma-bond of amine-boranes on the chromium(0) center of arene chromium tricarbonyl complexes (eta(6)-arene) Cr(CO)(3) (arene = fluorobenzene, 1a; benzene, 1b and mesitylene, 1c) has been studied. Photolysis of 1b in presence of ammonia-borane (H3N center dot BH3, AB) and tert-butylamine-borane ((BuH2N)-Bu-t center dot BH3, TBAB) resulted in H-2 evolution and precipitation of a BNHx polymer. On the other hand, photolysis in the presence of trimethylamine-borane (Me3N center dot BH3, TMAB) resulted in the formation of a sigma-borane complex (2) along with Cr(CO)(5)(eta(1)-HBH2 center dot NMe3) (3). The sigma-borane complexes (eta(6)-arene) Cr-( CO)(2)(eta(1)-HBH2 center dot NMe3) (arene = fluorobenzene, 2a; benzene, 2b and mesitylene, 2c) were characterized in solution by H-1, B-11, and C-13 NMR spectroscopy. Electron withdrawing substituents on the arene ring provide the more stable sigma-borane moiety in this series of complexes. (C) 2011 Elsevier B.V. All rights reserved.