195 resultados para 2 chloro n
Resumo:
In the title compound, C16H13ClN2O, the quinoline ring system is approximately planar [maximum deviation 0.021 (2) angstrom] and forms a dihedral angle of 85.93 (6)degrees with the pyridone ring. Intermolecular C-H center dot center dot center dot O hydrogen bonding, together with weak C-H center dot center dot center dot pi and pi-pi interactions [centroid-to-centroid distances 3.5533 (9) and 3.7793 (9) angstrom], characterize the crystal structure.
Resumo:
In the title compound, C15H12ClN3O, the quinoline ring system is essentially planar, with a maximum deviation of 0.017 (1) angstrom. The crystal packing is stabilized by pi-pi stacking interactions between the quinoline rings of adjacent molecule, with a centroid-centroid distance of 3.5913 (8) angstrom. Aweak C-H center dot center dot center dot pi contact is also observed between molecules.
Resumo:
The molecule of title compound, C11H10ClNO, is close to being planar (r.m.s deviation for the non-H atoms = 0.017 angstrom). In the crystal, molecules interact by way of O-H center dot center dot center dot O hydrogen bonds, generating C(2) chains propagating in [010]. The crystal structure is consolidated by C-H center dot center dot center dot pi interactions and aromatic pi-pi stacking interactions [centroid-centroid distance = 3.661 (2) angstrom].
Resumo:
The title compound, C11H10ClNO, is close to being planar (r.m.s deviation for the non-H atoms = 0.026 angstrom). In the crystal,molecules are linked by O-H center dot center dot center dot O hydrogen bonds, generating C(2) chains, and weak C-H center dot center dot center dot pi interactions and aromatic pi-pi stacking interactions [centroid-centroid distance = 3.713 (3) angstrom] help to consolidate the sturcture.
Resumo:
In the title molecule, C19H14ClN3O, the quinoline and quinazoline ring systems form a dihedral angle of 80.75 (4)degrees. In the crystal, the molecules are linked by pairs of C-H center dot center dot center dot N hydrogen bonds into centrosymmetric dimers, generating R-2(2)(6) ring motifs. The structure is further stabilized by C-H center dot center dot center dot pi interactions and pi-pi stacking interactions [centroid-centroid distances = 3.7869 (8) and 3.8490 (8) angstrom].
Resumo:
4,5-Dihydroisoxazoles continue to attract considerable interest due to their wide spread biological activities. Here, we identify an efficient protocol for the preparation of 4,5-dihydroisoxazoles (2-isaxazolines) (4a-g) from quinolinyl chalcones. The nucleolytic activities of synthesized compounds were investigated by agarose gel electrophoresis. All these compounds were showed the remarkable DNA cleavage activity (concentration dependent) with pUC19 DNA at 365 nm UV light. The DNA cleavage activity was significantly enhanced by the presence of iminyl and carboxy radicals of DIQ. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Side chain homologated derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: pentyl; L-5, hexyl; L-6, heptyl; L-7 and octyl; L-8} have been synthesized and characterized by elemental analysis, FT-IR, H-1 NMR, UV-visible spectroscopy and LC-MS. Compounds, L-4, n-alkyl: butyl; L-4}, L-6 and L-8 have been characterized by single crystal X-ray diffraction studies. The single crystal X-ray structures reveal that L-4 and L-8 crystallizes in P2(1) space group, while L-6 in P2(1)/c space group. Molecules of L-4 and L-8 from polymeric chains through C-H center dot center dot center dot O and N-H center dot center dot center dot O close contacts. L-6 is a dimer formed by N-H center dot center dot center dot O interaction. Slipped pi-pi stacking interactions are observed between quinonoid and benzenoid rings of L-4 and L-8. Orientations of alkyl group in L-4 and L-8 is on same side of the chain and polymeric chains run opposite to one another to form zip like structure to the alkyl groups. Antiproliferative activities of L-1 to L-8{n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} were studied in cancer cells of colon (COLO205), brain (U87MG) and pancreas (MIAPaCa2) where L-1, L-2 and L-3 were active in MIAPaCa2 (L-1 = 1-2 > L-3) and COLO205 (L-2 = L-3 > L-1) and inactive in U87MG. From antiproliferative studies with compounds L-1 to L-8 it can be concluded that homologation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone with saturated methyl groups yielded tissue specific compounds such as L-2 (for MIAPaCa2) and L-3 (for COLO205) with optimal activity. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Single crystal X-ray structural analysis of a septanoside, namely, n-pentyl-2-chloro-2-deoxy sept-3-uloside (1) provides many finer details of the molecular structure, in addition to its preferred twist-chair conformation, namely, (TC3,4)-T-5,6 conformation. Structural analysis reveals a dense network of O-H...O, C-H...O and van der Waals interactions that stabilize interdigitized, planar bi-layer structure of the crystal lattice. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A kinetic study of the hydrolytic stabilities of mono-, di-, and 2-chloro-2-deoxy septanosides, under acid-catalysis, is reported herein. A comparison of mono-and diseptanosides, shows that the glycosidic bond in the disaccharide is more stable than the monosaccharide. Further the glycosidic bond at the reducing end hydrolyzes almost twice as faster than that of the non-reducing end of the disaccharide. 2-Chloro-2-deoxy septanoside is found to be the most stable and its glycosidic bond hydrolysis occurs at elevated temperatures only. The orientation of the exo-cyclic hydroxymethyl group and the inductive effect are suggested to play a role in the rates of hydrolysis. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Treatment of gem-dihalo-1,2-cyclopropanated D-oxyglycal with primary, secondary, and unsaturated alcohols, in the presence of AgOAc, leads to the formation of chloro-oxepines exclusively. Reaction of the resulting 2-chloro-oxepines with excess alcohol in the presence of AgOAc, do not promote further reactions. This result is in contrast to the reactions of D-glucal derived halo-oxepine with alcohols known previously that lead to the formation of furanoses as the major product under similar reaction conditions. Observation of this study consolidates the reactivity differences of gem-dihalo-1,2-cyclopropanated oxyglycals, as compared to gem-dihalo- 1,2-cyclopropanated glycals. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The experimental charge density distribution in three compounds, 2-chloro-3-quinolinyl methanol, 2-chloro-3-hydroxypyridine, and 2-chloro-3-chloromethyl-8-methylquinoline, has been obtained using high-resolution X-ray diffraction data collected at 100 K based on the aspherical multipole modeling of electron density. These compounds represent type I (cis), type I (trans), and type II geometries, respectively, as defined for short Cl center dot center dot center dot Cl interactions. The experimental results are compared with the theoretical charge densities using theoretical structure factors obtained from a periodic quantum calculation at the B3LYP/6-31G** level. The topological features derived from the Bader's theory of atoms in molecules (AIM) approach unequivocally suggest that both cis and trans type I geometries show decreased repulsion, whereas type II geometry is attractive based on the nature of polar flattening of the electron density around the Cl atom.
Resumo:
Experimental charge density distribution in 2-chloro-4-fluorobenzoic acid and 4-fluorobenzamide has been carried out using high resolution X-ray diffraction data collected at 100 K using Hansen-Coppens multipolar formalism of electron density. These compounds display short Cl center dot center dot center dot F and F center dot center dot center dot F interactions, respectively. The experimental results are compared with the theoretical charge densities using theoretical structure factors obtained from periodic quantum calculation at the B3LYP/6-31G** level. The topological features were derived from Bader's ``atoms in molecules'' (AIM) approach. Intermolecular Cl center dot center dot center dot F interaction in 2-chloro-4-fluorobenzoic acid is attractive in nature (type II interaction) while the nature of F center dot center dot center dot F interactions in 4-fluorobenzamide shows indication of a minor decrease in repulsion (type I interaction), though the extent of polarization on the fluorine atom is arguably small.
Resumo:
New 2-chloro-3-formyl quinoline oxime esters were synthesized by the reaction of 2-chloro-3-formyl quinoline oximes with various benzoyl chlorides in the presence of triethyl amine and dichloromethane at 0 degrees C. The DNA photo cleavage studies of some new oxime esters were investigated by neutral agarose gel electrophoresis at different concentrations (40 mu M and 80 mu M). Analysis of the cleavage products in agarose gel indicated that few of quinoline oxime esters (3d-i) converted into supercoiled pUC19 plasmid DNA to its nicked or linear form. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A series of simple quinoline-chalcone conjugates have been synthesized by Claisen-Schmidt condensation reactions of substituted acetophenones with 2-chloro-3-formyl-quinoline and evaluated for their nucleolytic activity. The structures of the synthesized quinoline-chalcone conjugates were confirmed by IR, H-1 NMR, C-13 NMR and mass spectral analyses. Most of the prepared compounds showed significant DNA binding and photocleavage activities. The incorporation of an electron-donating group into ring A caused a moderate increase in the DNA binding and photocleavage activities. Compounds 3c and 3d exhibited promising DNA photocleavage against pUC 19 DNA with 85% inhibition at 100 mu M concentration. A structure-activity relationship analysis of these compounds was performed; compounds 3c and 3d are potential candidates for future drug discovery and development.