56 resultados para 161-977
Resumo:
The equation of motion for a toroidal flux ring in a stellar convective envelope is derived, and the equilibrium of such a ring is considered. Necessary conditions for the stability of toroidal flux rings are derived, and results of stability calculations for a particular model of the meridional flow are presented. The motions of the flux rings when the rings are far from their equilibrium position or when equilibrium does not exist are considered. The results confirm the linear stability analysis, and show that in the absence of stable equilibrium, the rings move toward the solar surface along a trajectory which is parallel to the rotation axis. It is expected that viscosity will tend to reduce the rotational velocity difference between the flux ring and its surroundings, thus reducing the Coriolis force and altering the equilibrium. The storage time of toroidal flux rings is estimated, and some implications for the sun are discussed.
Resumo:
Notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and the entire fracture process was simulated using a regular triangular two-dimensional lattice network only over the expected fracture proces zone width. The rest of the beam specimen was discretised by a coarse triangular finite element mesh. The discrete grain structure of the concrete was generated assuming the grains to be spherical. The load versus CMOD plots thus simulated agreed reasonably well with the experimental results. Moreover, acoustic emission (AE) hits were recorded during the test and compared with the number of fractured lattice elements. It was found that the cumulative AE hits correlated well with the cumulative fractured lattice elements at all load levels thus providing a useful means for predicting when the micro-cracks form during the fracturing process, both in the pre-peak and in the post-peak regimes.
Resumo:
The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Limiting cases of scattering under Zeeman effect, and Hanle effect in weak magnetic fields are discussed. The theory is general enough to handle scattering in intermediate magnetic fields (Hanle-Zeeman effect) and for arbitrary orientation of magnetic field. The quadrupolar electric field produces asymmetric line shifts, and causes interesting level-crossing phenomena either in the absence of an ambient magnetic field, or in its presence. It is shown that the quadrupolar electric field produces an additional depolarization in the Q/I profiles and rotation of the plane of polarization in the U/I profile over and above that arising from magnetic field itself. This characteristic may have a diagnostic potential to detect steady-state and time-varying electric fields that surround radiating atoms in solar atmospheric layers. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The Raman spectrum of lithium hydrazinium sulphate has been recorded both in the single crystal form and in aqueous solutions. The crystal exhibits thirty-eight Raman lines having the frequency shifts 52, 70, 104, 146, 174, 220, 260, 302, 350, 454, 470, 610, 630, 715, 977, 1094, 1115, 1132, 1177, 1191, 1260, 1444, 1493, 1577, 1630, 1670, 2205, 2484, 2553, 2655, 2734, 2848, 2894, 2939, 3028, 3132, 3290 and 3330 cm.−1 The aqueous solution gave rise to six Raman lines at 452, 980, 1050–1200, 1260, 1425 and 1570 cm.−1 apart from a maximum at 180 cm.−1 in the ‘wing’ accompanying the Rayleigh line. The observed Raman lines have been assigned as arising from the vibrations of the SO4 ion, N2H5+ ion, Li-O4 group, hydrogen bond and the lattice. The influence of the hydrogen bond on the N-H stretching vibrations has been pointed out. The various features of the observed spectrum strongly support the hypothesis that the NH3 group in the crystal is rotating around the N-N axis at room temperature.
Resumo:
Spectrophotometric and potentiometric investigations have been carried out on copper-monoethanolamine complexes. Job plots at 920, 760 and 620 mµ have indicated the formation of CuA++, CuA2/++ and CuA3 ++. The$$\bar n - pA$$ curves have been obtained by a slight modification of the method of corresponding solutions and by pH measurements. The$$\bar n$$ vs. pA curves obtained at different metal concentrations coincide indicating the formation of mononuclear complexes. Experiments conducted with 0·1. 0·2, 0·5 and 1·0 M monoethanolammonium ion indicate the formation of mononuclear hydroxy complexes above pH 6. The nature of E m vs pA curves is closely analogous to that of$$\bar n$$ vs. pA curves. Absorption spectra taken at pH 9·8 with different amounts of monoethanolamine has given evidence for the formation of (CuA3OH·A)+.$$\bar n - pA$$ curves have been analyzed and the values ofβ 1, 1,β 1, 2 andβ 1, 3 have been obtained. Curves showing the distribution of complexes and the absorption curves of the individual complexes (CuA++, CuA2/++, and CuA3/++) have been calculated.
Resumo:
Design creativity involves developing novel and useful solutions to design problems The research in this article is an attempt to understand how novelty of a design resulting from a design process is related to the kind of outcomes. described here as constructs, involved in the design process A model of causality, the SAPPhIRE model, is used as the basis of the analysis The analysis is based on previous research that shows that designing involves development and exploration of the seven basic constructs of the SAPPhIRE model that constitute the causal connection between the various levels of abstraction at which a design can be described The constructs am state change, action, parts. phenomenon. input. organs. and effect The following two questions are asked. Is there a relationship between novelty and the constructs? If them is a relationship, what is the degree of this relationship? A hypothesis is developed to answer the questions an increase in the number and variety of ideas explored while designing should enhance the variety of concept space. leading to an increase in the novelty of the concept space Eight existing observational studies of designing sessions are used to empirically validate the hypothesis Each designing session involves an individual designer. experienced or novice. solving a design problem by producing concepts and following a think-aloud protocol. The results indicate dependence of novelty of concept space on variety of concept space and dependence of variety of concept space on variety of idea space. thereby validating the hypothesis The Jesuits also reveal a strong correlation between novelty and the constructs, correlation value decreases as the abstraction level of the constructs reduces. signifying the importance of using constructs at higher abstraction levels for enhancing novelty
Resumo:
Base metal (Cr, Mn, Fe, Ni, Cu) substituted CeVO4 compounds were synthesized by the solution combustion technique. These compounds were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, transmission electron microscopy and BET surface area analyzer. The characterization indicated that the base metals were substituted in the ionic state in all the compounds. These compounds were used for the photocatalytic degradation of phenol and the degradation rates obtained in the presence of these compounds werecompared against that obtained with the commercial Degussa P-25 TiO2 catalyst. Fe and Cr substituted CeVO4 showed photocatalytic activity that was comparable with that of Degussa P-25 TiO2. The concentration of toxic intermediates was high when the reaction was carried out in presence of Degussa P-25 TiO2 but it was found to be insignificant when the reaction was carried out in presence of base metal-substituted CeVO4. The effect of % Fe-substitution (varied from 1 to 5 at%) in CeVO4 on the photocatalytic activity was also investigated and it was observed that 1 at% Fe-substituted compound showed the highest activity. A mathematical model describing the kinetics of the photocatalytic degradation of phenol was developed on the basis of the catalyst structure and taking into account the formation of all the possible intermediates. The variation of the concentration of phenol and the intermediates was described by the model and the reaction rateconstants were determined. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a detailed description of the hardware design and implementation of PROMIDS: a PROtotype Multi-rIng Data flow System for functional programming languages. The hardware constraints and the design trade-offs are discussed. The design of the functional units is described in detail. Finally, we report our experience with PROMIDS.
Resumo:
The criterion for the design of a temperature-compensated reference electrode for non-isothermal galvanic sensors is deduced from the basic flux equations of irreversible thermodynamics. It is shown that when the Seebeck coefficient of the non-isothermal cell using a solid oxygen ion-conducting electrolyte under pure oxygen is equal to the relative partial molar entropy of oxygen in the reference electrode divided by 4F, then the EMF of the non-isothermal cell is the same as that of an isothermal cell with the same electrodes operating at the higher temperature. By measuring the temperature of the melt alone and the EMF of the non-isothermal galvanic sensor, one can derive the chemical potential or the concentration of oxygen in a corrosive medium. The theory is experimentally checked using sensors for oxygen in liquid copper constructed with various metal+oxide electrodes and fully stabilised (CaO)ZrO2 as the electrolyte. To satisfy the exact condition for temperature compensation it is often necessary to have the metal or oxide as a solid solution in the reference electrode.
Resumo:
The change in the specific heat by the application of magnetic field up to 161 for high temperature superconductor system for DyBa2Cu3O7-x by Revaz et al. [23] is examined through the phenomenological Ginzburg-Landau(G-L) theory of anisotropic Type-II superconductors. The observed specific heat anomaly near T-c with magnetic field is explained qualitatively through the expression <Delta C > = (B-a/T-c) t/(1 - t)(alpha Theta(gamma)lambda(2)(m)(0)), which is the anisotropic formulation of the G-L theory in the London limit developed by Kogan and coworkers; relating to the change in specific heat Delta C for the variation of applied magnetic field for different orientations with c-axis. The analysis of this equation explains satisfactorily the specific heat anomaly near T-c and determines the anisotropic ratio gamma as 5.608, which is close to the experimental value 5.3 +/- 0.5given in the paper of Revaz et al. for this system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
When there is a variation in the quality of males in a population, multiple mating can lead to an increase in the genetic fitness of a female by reducing the variance of the progeny number. The extent of selective advantage obtainable by this process is investigated for a population subdivided into structured demes. It is seen that for a wide range of model parameters (deme size, distribution of male quality, local resource level), multiple mating leads to a considerable increase in the fitness. Frequency-dependent selection or a stable coexistence between polyandry and monandry can also result when the possible costs involved in multiple mating are taken into account.
Resumo:
It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986); P. L. Sachdev and K. R. C. Nair, ibid. 28, 977 (1987)] that the Euler–Painlevé equations y(d2y/dη2)+a(dy/dη)2 +f(η)y(dy/dη)+g(η)y2+b(dy/dη) +c=0 represent generalized Burgers equations (GBE’s) in the same way as Painlevé equations represent the Korteweg–de Vries type of equations. The earlier studies were carried out in the context of GBE’s with damping and those with spherical and cylindrical symmetry. In the present paper, GBE’s with variable coefficients of viscosity and those with inhomogeneous terms are considered for their possible connection to Euler–Painlevé equations. It is found that the Euler–Painlevé equation, which represents the GBE ut+uβux=(δ/2)g(t)uxx, g(t)=(1+t)n, β>0, has solutions, which either decay or oscillate at η=±∞, only when −1
Resumo:
A creep resistant permanent mould cast Mg alloy MRI 230D was laser surface alloyed with Al and a mixture of Al and Al2O3 using pulsed Nd:YAG laser irradiation at four different scan speeds in order to improve the corrosion and wear resistance. The microstructure, corrosion and wear behavior of the laser surface alloyed material is reported in this manuscript. The coating comprised of a featureless microstructure with cellular-dendritic microstructure near the interface and exhibited good interfacial bonding. A few solidification cracks reaching down to substrate were also observed. The two step coating with Al followed by a mixture of Al and Al2O3 exhibited a slightly better corrosion resistance than the single step coating with Al. In the long run, however, corrosion resistance of both the coatings became comparable to the as-cast alloy. The corroded surface of the laser surface alloyed specimens revealed a highly localized corrosion. The laser surface alloyed specimens exhibited an improvement in wear resistance. The laser scan speed did not exhibit a monotonic trend either in corrosion or wear resistance.