98 resultados para 159-958B
Resumo:
Interaction of shock heated test gas in the free piston driven shock tube with bulk and thin film of cubic zirconium dioxide (ZrO2) prepared by combustion method is investigated. The test samples before and after exposure to the shock wave are analyzed by X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscope (SEM). The study shows transformation of metastable cubic ZrO2 to stable monoclinic ZrO2 phase after interacting with shock heated oxygen gas due to the heterogeneous catalytic recombination surface reaction.
Resumo:
A monostable multivibrator configuration using a new technique of regenerative feedback is discussed. This circuit provides an elegant alternative in situations wherein several monostable multivibrators have to be connected in tandem.
Resumo:
A partically purified enzyme from Arthrobacter synephrinum was found to catalyse the conversion of (+/-)-synphrine into p-hydroxyphrenylacetaldehyde and methylamine. The enzyme is highly specific for synephrine and is distinctly different from monoamine oxidase.
Resumo:
A generalised theory for the natural vibration of non-uniform thin-walled beams of arbitrary cross-sectional geometry is proposed. The governing equations are obtained as four partial, linear integro-differential equations. The corresponding boundary conditions are also obtained in an integro-differential form. The formulation takes into account the effect of longitudinal inertia and shear flexibility. A method of solution is presented. Some numerical illustrations and an exact solution are included.
Resumo:
Poly(3,4-ethylenedioxy)thiophene (PEDOT) doped with tosylate ion (PEDOT-tosylate or VPP PEDOT) was synthesized by vapor phase polymerization (VPP) technique on glass as well as on glass/ITO and the electrochromic properties were investigated. Compared with that of PEDOT-PSS spin-coated on glass/ITO, the studies showed that VPP PEDOT has a lower work function and better electrochromic properties. The magneto and AC transport properties studies were done on VPP PEDOT coated on glass substrate. The system shows 2-dimensional variable range hopping and wave function shrinkage of charge carriers.
Resumo:
High dielectric constant (ca. 2.4 x 10(6) at 1 kHz) nanocomposite of polyaniline (PANI)/CaCu3Ti4O12 (CCTO) was synthesized using a simple procedure involving in situ polymerization of aniline in dil. HCl. The PANI and the composite were subjected to X-ray diffraction, Fourier transform infrared, thermo gravimetric, scanning electron microscopy and transmission electron microscopy analyses. The presence of the nanocrystallites of CCTO embedded in the nanofibers of PANI matrix was established by TEM. Frequency dependent characteristics of the dielectric constant. dielectric loss and AC conductivity were studied for the PANI and the composites. The dielectric constant increased as the CCTO content increased in PANI but decreased with increasing frequency (100 Hz-1 MHz) of measurement. The dielectric loss was two times less than the value obtained for pure PANI around 100 Hz. The AC conductivity increased slightly up to 2 kHz as the CCTO content increased in the PANI which was attributed to the polarization of the charge carriers.
Resumo:
The performance of surface aeration systems, among other key design variables, depends upon the geometric parameters of the aeration tank. Efficient performance and scale up or scale down of the experimental results of an aeration ystem requires optimal geometric conditions. Optimal conditions refer to the conditions of maximum oxygen transfer rate, which assists in scaling up or down the system for ommercial utilization. The present work investigates the effect of an aeration tank's shape (unbaffled circular, baffled circular and unbaffled square) on oxygen transfer. Present results demonstrate that there is no effect of shape on the optimal geometric conditions for rotor position and rotor dimensions. This experimentation shows that circular tanks (baffled or unbaffled) do not have optimal geometric conditions for liquid transfer, whereas the square cross-section tank shows a unique geometric shape to optimize oxygen transfer.
Resumo:
T cell-mediated cytotoxicity against Mycobacterium tuberculosis (MTB)-infected macrophages may be a major mechanism of specific host defense, but little is known about such activities in the lung. Thus, the capacity of alveolar lymphocyte MTB-specific cell lines (AL) and alveolar macrophages (AM) from tuberculin skin test-positive healthy subjects to serve as CTL and target cells, respectively, in response to MTB (H37Ra) or purified protein derivative (PPD) was investigated. Mycobacterial Ag-pulsed AM were targets of blood CTL activity at E:T ratios of > or = 30:1 (51Cr release assay), but were significantly more resistant to cytotoxicity than autologous blood monocytes. PPD- plus IL-2-expanded AL and blood lymphocytes were cytotoxic for autologous mycobacterium-stimulated monocytes at E:T ratios of > or = 10:1. The CTL activity of lymphocytes expanded with PPD was predominantly class II MHC restricted, whereas the CTL activity of lymphocytes expanded with PPD plus IL-2 was both class I and class II MHC restricted. Both CD4+ and CD8+ T cells were enriched in BL and AL expanded with PPD and IL-2, and both subsets had mycobacterium-specific CTL activity. Such novel cytotoxic responses by CD4+ and CD8+ T cells may be a major mechanism of defense against MTB at the site of disease activity.
Resumo:
Classical and non-classical isomers of both neutral and dianionic BC2P2H3 species, which are isolobal to Cp+ and Cp-, are studied at both B3LYP/6-311++G(d,p) and G3B3 levels of theory. The global minimum structure given by B3LYP/6-311+ + G(d,p) for BC2P2H3 is based on a vinylcyclopropenyl-type structure, whereas BC2P2H32- has a planar aromatic cyclopentadienyl-ion-like structure. However, at the G3B3 level, there are three low-energy isomers for BC2P2H3: 1)tricyclopentane, 2) nido and 3) vinylcyclopropenyl-type structures, all within 1.7 kcal mol(-1) of each other. On the contrary, for the dianionic species the cyclic planar structure is still the minimum. In comparison to the isolobal Cp+ and HnCnP5-n+ isomers, BC2P2H3 shows a competition between pi-delocalised vinylcyclopropenyl- and cluster-type structures (nido and tricyclopentane). Substitution of H on C by tBu, and H on B by Ph, in BC2P2H3 increases the energy difference between the low-lying isomers, giving the lowest energy structure as a tricyclopentane type. Similar substitution in BC2P2H32- merely favours different positional isomers of the cyclic planar geometry, as observed in 1) isoelectronic neutral heterodiphospholes EtBu2C2P2 (E=S, Se, Te), 2) monoanionic heterophospholyl rings EtBu2C2P2 (E=P-, As-, Sb-) and 3) polyphospholyl rings anions tBu(5-n)C(n)P(5-n) (n=0-5). The principal factors that affect the stability of three-, four-, and five-membered ring and acyclic geometrical and positional isomers of neutral and dianionic BC2P2H3 isomers appear to be: 1) relative bond strengths, 2) availability of electrons for the empty 2p boron orbital and 3) steric effects of the tBu groups in the HBC(2)P(2)tBu(2) systems.
Resumo:
The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.
Resumo:
Analysis of the genomic sequences of Escherichia coli and Salmonella typhimurium has revealed the presence of several homologues of the well studied citrate synthase (CS). One of these homologues has been shown to code for 2-methylcitrate synthase (2-MCS) activity. 2-MCS catalyzes one of the steps in the 2-methylcitric acid cycle found in these organisms for the degradation of propionate to pyruvate and succinate. In the present work, the gene coding for 2-MCS from S. typhimurium (StPrpC) was cloned in pRSET-C vector and overexpressed in E. coli. The protein was purified to homogeneity using Ni-NTA affinity chromatography. The purified protein was crystallized using the microbatch-under-oil method. The StPrpC crystals diffracted X-rays to 2.4 A resolution and belonged to the triclinic space group P1, with unit-cell parameters a = 92.068, b = 118.159, c = 120.659 A, alpha = 60.84, beta = 67.77, gamma = 81.92 degrees. Computation of rotation functions using the X-ray diffraction data shows that the protein is likely to be a decamer of identical subunits, unlike CSs, which are dimers or hexamers.
Resumo:
Mycobacterium tuberculosis is a successful pathogen that overcomes numerous challenges presented by the immune system of the host. This bacterium usually establishes a chronic infection in the host where it may silently persist inside a granuloma until, a failure in host defenses, leads to manifestation of the disease. None of the conventional anti-tuberculosis drugs are able to target these persisting bacilli. Development of drugs against such persisting bacilli is a constant challenge since the physiology of these dormant bacteria is still not understood at the molecular level. Some evidence suggests that the in vivo environment encountered by the persisting bacteria is anoxic and nutritionally starved. Based on these assumptions, anaerobic and starved cultures are used as models to study the molecular basis of dormancy. This review outlines the problem of persistence of M. tuberculosis and the various in vitro models used to study mycobacterial latency. The basis of selecting the nutritional starvation model has been outlined here. Also, the choice of M. smegmatis as a model suitable for studying mycobacterial latency is discussed. Lastly, general issues related to oxidative stress and bacterial responses to it have been elaborated. We have also discussed general control of OxyR-mediated regulation and emphasized the processes which manifest in the absence of functional OxyR in the bacteria. Lastly, a new class of protein called Dps has been reviewed for its important role in protecting DNA under stress.
Resumo:
This paper considers the problem of the design of the quadratic weir notch, which finds application in the proportionate method of flow measurement in a by-pass, such that the discharge through it is proportional to the square root of the head measured above a certain datum. The weir notch consists of a bottom in the form of a rectangular weir of width 2W and depth a over which a designed curve is fitted. A theorem concerning the flow through compound weirs called the “slope discharge continuity theorem” is discussed and proved. Using this, the problem is reduced to the determination of an exact solution to Volterra's integral equation in Abel's form. It is shown that in the case of a quadratic weir notch, the discharge is proportional to the square root of the head measured above a datum Image a above the crest of the weir. Further, it is observed that the function defining the shape of the weir is rapidly convergent and its value almost approximates to zero at distances of 3a and above from the crest of the weir. This interesting and significant behaviour of the function incidentally provides a very good approximate solution to a particular Fredholm integral equation of the first kind, transforming the notch into a device called a “proportional-orifice”. A new concept of a “notch-orifice” capable of passing a discharge proportional to the square root of the head (above a particular datum) while acting both as a notch, and as an orifice, is given. A typical experiment with one such notch-orifice, having A = 4 in., and W = 6 in., shows a remarkable agreement with the theory and is found to have a constant coefficient of discharge of 0.61 in the ranges of both notch and orifice.
Resumo:
neral expressions have been derived for the intensities of the three classes of Raman lines namely totally symmetric A, doubly degenerate E and triply degenerate F, in the case of cubic crystals under the following conditions. The direction of the incident beam which is polarised with its electric vector inclined at an angle α to the normal to the scattering plane makes an angle Θ with one of the cubic axes of the crystal. The transversely scattered light is analysed by a double image prism with its principal axes inclined at angle β to the normal to the scattering plane, which is horizontal. For incident unpolarised light and Θ=22 1/2°, and the scattered light being analysed by a double image prism rotated through 45° from the position when its principal axes are vertical and horizontal ρ{variant} for A lines is equal to one, for E lines >1 and for F lines <1. This gives a method of classifying the Raman lines of a cubic crystal in a single setting. The results have been experimentally verified in sodium chlorate.