78 resultados para 144-877
Resumo:
The reduction in natural frequencies,however small, of a civil engineering structure, is the first and the easiest method of estimating its impending damage. As a first level screening for health-monitoring, information on the frequency reduction of a few fundamentalmodes can be used to estimate the positions and the magnitude of damage in a smeared fashion. The paper presents the Eigen value sensitivity equations, derived from first-order perturbation technique, for typical infra-structural systems like a simply supported bridge girder, modelled as a beam, an endbearing pile, modelled as an axial rod and a simply supported plate as a continuum dynamic system. A discrete structure, like a building frame is solved for damage using Eigen-sensitivity derived by a computationalmodel. Lastly, neural network based damage identification is also demonstrated for a simply supported bridge beam, where the known-pairs of damage-frequency vector is used to train a neural network. The performance of these methods under the influence of measurement error is outlined. It is hoped that the developed method could be integrated in a typical infra-structural management program, such that magnitudes of damage and their positions can be obtained using acquired natural frequencies, synthesized from the excited/ambient vibration signatures.
Resumo:
A temperature dependence has been observed in the spin-Hamiltonian parameters of the Cu++ ion in a tetragonal crystal field and the variation has been interpreted in terms of vibronic effects.
Resumo:
Raman spectra of single crystals of K2M(SO4)2 · 6 H2O where M=Mg, Zn, Ni or Co have been recorded for the first time using λ 2537 as the exciting radiation. The corresponding five single sulphates have also been studied. Interesting results concerning the substitution of magnesium, zinc, nickel or cobalt in the double sulphate lattice on the sulphate frequencies are observed. The lattice spectra of these double sulphates are analysed group theoretically and discussed in relation to the lattice spectra of the corresponding individual sulphates. Certain new results concerning the Raman spectra of the individual sulphates have also been obtained and in the case of CoSO4 · 7 H2O the spectrum has been recorded for the first time.
Resumo:
Raman spectra of single crystals of β-malonic acid and β-succinic acid have been photographed using λ 2536·5 radiation. 32 Raman lines have been recorded in the case of β-malonic acid. Of these 21 lines have been recorded for the first time. The three intense lattice lines at 52, 90 and 144 cm.-1 have been attributed to rotational lattice oscillations. 29 Raman lines in the case of β-succinic acid have been recorded. The entire lattice spectrum and many internal frequencies have been recorded for the first time. The three intense lattice lines at 80, 135 and 160 cm.-1 have been assigned to the rotational oscillations of the two molecules of the succinic acid in the unit cell.
Resumo:
Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the D-Ala-D-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetyl-glucosamine and N-acetyl-muramic acid-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. beta-Lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a beta-lactamase and is not trapped as an acyl intermediate with beta-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.
Resumo:
A photoemission study of superconducting Nd1.85Ce0.15CuO4-δ shows that Ce in the cuprate is essentially in the 4+ state. While the electron donated by Ce does not appear to affect the Cu 3d band, we still find evidence for the presence of considerable Cu1+ - related configurations due to covalency effects. A role for oxygen holes and Cu1+ species is indicated just as in other cuprate superconductors.
Resumo:
Cytokinins induced haustoria formation in excised 10-mm segments ofCuscuta vine, the subapical 25-to-50-mm region being most responsive, producing a mean of 4–6 haustoria per segment. The order of effectiveness of cytokinins continuously applied (72 h) was 6-benzylaminopurine (BA) ges isopentenyladenine (iP) Gt zeatin (Z). Ribosides of BA and Z were as effective as the bases, whereas riboside of iP ([9R]iP) was half as effective as iP. Haustoria induction was influenced by weather and seasonal conditions at the time of vine collection; materials obtained on warm, sunny days responded better than those obtained on rainy, cloudy, or cool days. Haustoria were induced equally well all around the segment, and no thigmostimulus was needed for induction. p ]A 10-min pulse of 100 mgrM BA induced half as many haustoria as a 60-min pulse or continuous application of BA. White light inhibited haustoria induction elicited by a short (30-min) pulse of BA, whereas a longer (120-min) BA application overcame this light inhibition. Auxins (IAA or NAA, 1–10 mgrM), gibberellin (GA3, 1–10 mgrM), ethylene (as ethrel, 10–100 mgrM), and abscisic acid (ABA, 100 mgrM) were individually inhibitory (60–80%) with respect to haustoria induction when given continuously with 50 mgrM BA. A 60-min pulse of auxins (10 mgrM), GA3 (100 mgrM), or ethrel (10 mgrM), given at various time intervals during or after a 60-min pulse of 100 mgrM BA, showed that inhibition was maximal (70–95%) between 4 and 16 h of BA application and negligible (GA3) or much reduced (auxin, ethrel) at 20 h, indicating a ldquocommitmentrdquo to haustoria formation by this time.
Resumo:
Polymeric admixtures to concrete ingredients modify the properties of the processed concrete. Ductility is one such property modification. This investigation deals with the development of a method of incorporating natural rubber latex into concrete ingredients with only marginal effects on the compressive strength of base plain concrete. This retention of the strength has been effected by reducing the water/cement ratio with the aid of a superplasticizer. The quantity of natural rubber latex is expressed as the dry rubber content by percentage of volume of concrete. The compressive and tensile strengths, as well as post peak ductile behaviour have been the basis for comparison with those of unmodified concrete.
Resumo:
Abstract. NHn+.C2H3NzO4, Mr= 137.1, triclinic, Pi, a=3-952(1), b=6.772(1), c=9.993(1)A, a= 98.06 (1), fl= 89.96 (1), ~= 106.96 (1) °. V=253.06 A 3, z = 2, 2(Cu Ka) = 1.5418 A, g =15.29 cm -~, D m = 1.805, D x = 1.798 g cm -3, F(000)= 144, T= 293 K, R = 0.048 for 795 observed reflections. The unit cell contains two independent centrosymmetric molecules, one centred at (0,0,0) and the other at (0.5, 0.0, 0.5). The presence of experimentally determined~N-H groups and the -C=O bond lengths of 1.248 (4) and 1.247 (4)A indicate that the compound exists in the oxamic rather than the oximic form. Only one hydroxyl hydrogen is associated with each molecule. They are located at centres of inversion (0,0.5,0 and 0,0.5,0.5) and are shared between symmetry-related molecules via short symmetric H bonds with O...O=2.454(4), 2.457(4) and all O-H = 1.23 A
Resumo:
The advent of large and fast digital computers and development of numerical techniques suited to these have made it possible to review the analysis of important fundamental and practical problems and phenomena of engineering which have remained intractable for a long time. The understanding of the load transfer between pin and plate is one such. Inspite of continuous attack on these problems for over half a century, classical solutions have remained limited in their approach and value to the understanding of the phenomena and the generation of design data. On the other hand, the finite element methods that have grown simultaneously with the recent development of computers have been helpful in analysing specific problems and answering specific questions, but are yet to be harnessed to assist in obtaining with economy a clearer understanding of the phenomena of partial separation and contact, friction and slip, and fretting and fatigue in pin joints. Against this background, it is useful to explore the application of the classical simple differential equation methods with the aid of computer power to open up this very important area. In this paper we describe some of the recent and current work at the Indian Institute of Science in this last direction.
Resumo:
Promethazine picrate (C23H23N5O7S) crystallises in the triclinic space group P[unk] with a = 8.137(1), b = 8.144(3), c = 19.224(6) Å, α = 87.78(3), β = 79.97(2), γ = 70.57(2)° and two molecules per unit cell. The structure was solved by direct methods (MULTAN 80) using 2438 observed reflections [I > 2.5 σ(I)]. Refinement was carried out by block-diagonal least-squares methods to a final R = 0.052. The picrate group is planar and is almost perpendicular to the promethazine plane. The two groups are joined by a hydrogen bond. The pairs of molecules related by a centre of symmetry make a molecular arrangement where promethazine and picrate groups are packed in sheets in three dimensions.
Resumo:
This paper is concerned with grasping biological cells in aqueous medium with miniature grippers that can also help estimate forces using vision-based displacement measurement and computation. We present the design, fabrication, and testing of three single-piece, compliant miniature grippers with parallel and angular jaw motions. Two grippers were designed using experience and intuition, while the third one was designed using topology optimization with implicit manufacturing constraints. These grippers were fabricated using different manufacturing techniques using spring steel and polydimethylsiloxane ( PDMS). The grippers also serve the purpose of a force sensor. Toward this, we present a vision-based force-sensing technique by solving Cauchy's problem in elasticity using an improved algorithm. We validated this technique at the macroscale, where there was an independent method to estimate the force. In this study, the gripper was used to hold a yeast ball and a zebrafish egg cell of less than 1 mm in diameter. The forces involved were estimated to be about 30 and 10 mN for the yeast ball and the zebrafish egg cell, respectively.