27 resultados para 13368-056


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper reports the effect of addition of small amount of Mg on the mechanical and oxidation properties of Nb-Nb3Si eutectic composites in Nb-Si system under the condition of suction casting. Mg addition increases the volume fraction of primary dendrites of Nb solid solution. This phase contains significant amount of strengthening precipitates. Two different precipitates are identified. The large plate shaped precipitates are that of hcp phase, while fine coherent precipitates have the structure similar to recently identified delta-Nb11Si2 phase. The Mg addition improves both the strength and ductility of the composite at room temperature (similar to 1.4 GPa and similar to 5% engineering strain) as well as at 700 degrees C(similar to 1.2 GPa and similar to 7% engineering strain). The presence of Mg results in a complex barrier layer which significantly increases the oxidation resistance up to a temperature of at least 1000 degrees C. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low grade thermal energy from sources such as solar, geothermal and industrial waste heat in the temperature range of 380-425 K can be converted to electrical energy with reasonable efficiency using isopentane and R-245fa. While the former is flammable and the latter has considerable global warming potential, their mixture in 0.7/0.3 mole fraction is shown to obviate these disadvantages and yet retain dominant merits of each fluid. A realistic thermodynamic analysis is carried out wherein the possible sources of irreversibilities such as isentropic efficiencies of the expander and the pump and entropy generation in the regenerator, boiler and condenser are accounted for. The performance of the system in the chosen range of heat source temperatures is evaluated. A technique of identifying the required source temperature for a given output of the plant and the maximum operating temperature of the working fluid is developed. This is based on the pinch point occurrence in the boiler and entropy generation in the boiling and superheating regions of the boiler. It is shown that cycle efficiencies of 10-13% can be obtained in the range investigated at an optimal expansion ratio of 7-10. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

String theory and gauge/gravity duality suggest the lower bound of shear viscosity (eta) to entropy density (s) for any matter to be mu h/4 pi k(B), when h and k(B) are reduced Planck and Boltzmann constants respectively and mu <= 1. Motivated by this, we explore eta/s in black hole accretion flows, in order to understand if such exotic flows could be a natural site for the lowest eta/s. Accretion flow plays an important role in black hole physics in identifying the existence of the underlying black hole. This is a rotating shear flow with insignificant molecular viscosity, which could however have a significant turbulent viscosity, generating transport, heat and hence entropy in the flow. However, in presence of strong magnetic field, magnetic stresses can help in transporting matter independent of viscosity, via celebrated Blandford-Payne mechanism. In such cases, energy and then entropy produces via Ohmic dissipation. In,addition, certain optically thin, hot, accretion flows, of temperature greater than or similar to 10(9) K, may be favourable for nuclear burning which could generate/absorb huge energy, much higher than that in a star. We find that eta/s in accretion flows appears to be close to the lower bound suggested by theory, if they are embedded by strong magnetic field or producing nuclear energy, when the source of energy is not viscous effects. A lower bound on eta/s also leads to an upper bound on the Reynolds number of the flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using continuous and near-real time measurements of the mass concentrations of black carbon (BC) aerosols near the surface, for a period of 1 year (from January to December 2006) from a network of eight observatories spread over different environments of India, a space-time synthesis is generated. The strong seasonal variations observed, with a winter high and summer low, are attributed to the combined effects of changes in synoptic air mass types, modulated strongly by the atmospheric boundary layer dynamics. Spatial distribution shows much higher BC concentration over the Indo-Gangetic Plain (IGP) than the peninsular Indian stations. These were examined against the simulations using two chemical transport models, GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport) and CHIMERE for the first time over Indian region. Both the model simulations significantly deviated from the measurements at all the stations; more so during the winter and pre-monsoon seasons and over mega cities. However, the CHIMERE model simulations show better agreement compared with the measurements. Notwithstanding this, both the models captured the temporal variations; at seasonal and subseasonal timescales and the natural variabilities (intra-seasonal oscillations) fairly well, especially at the off-equatorial stations. It is hypothesized that an improvement in the atmospheric boundary layer (ABL) parameterization scheme for tropical environment might lead to better results with GOCART.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase relations in the system Nb-Rh-O at 1223 K were investigated by isothermal equilibration of eleven compositions and analysis of quenched samples using OM, XRD, SEM and EDS. The oxide phase in equilibrium with the alloy changes progressively from NbO to NbO2, NbO2.422 and Nb2O5-x with increasing Rh. Only one ternary oxide NbRhO4 with tetragonal structure (a=0.4708 nm and c=0.3017 nm) was detected. It coexists with Rh and Nb2O5. The standard Gibbs energy of formation of NbRhO4 from its component binary oxides measured using a solid-state electrochemical cell can be represented by the equation; Delta G(f,ox)(o)(J/mol) = -38,350 + 5.818 x T(+/- 96) Constructed on the basis of thermodynamic information of the various alloy and oxide phases are oxygen potential diagram for the system Nb-Rh-O at 1223 K and temperature-composition diagrams at constant partial pressures of oxygen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H2O, CO2, CH4, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance such as the pollution of the snow cover through black carbon or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even-more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A typical Ce0.85Gd0.15O2-delta (CDC15) composition of CeO2-Gd2O3 system is synthesized by modified sol - gel technique known as citrate-complexation. TG-DTA, XRD, FT-IR, Raman, FE-SEM/EDX and ac impedance analysis are carried out for structural and electrical characterization. XRD pattern confirmed the well crystalline cubic fluorite structure of CDC15 after calcining at 873 K. Raman spectral bands at 463, 550 and 600 cm(-1) are also in agreement with these structural features. FE-SEM image shows well-defined grains separated from grain boundary and good densification. Ac impedance studies reveal that GDC15 has oxide ionic conductivity similar to that reported for Ce0.9Gd0.1O2-delta (GDC10) and Ce0.8Gd0.2O2-delta (GDC20). Ionic and electronic transference numbers at 673 K are found to be 0.95 and 0.05, respectively. This indicates the possible application of GDC15 as a potential electrolyte for IT-SOFCs. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volatile organic compounds (VOCs) are present in our every day used products such as plastics, cosmetics, air fresheners, paint, etc. The determination of amount of VOC present in atmosphere can be carried out via various sensors. In this work a nanocomposite of a novel thiophene based conducting polymer and carbon black is used as a volatile organic compound sensor. The fabricated 2 lead chemiresistor sensor was tested for vapours of toluene, acetone, cylcohexane, and carbon tetrachloride. The sensor responds to all the vapours, however, exhibit maximum response to toluene vapours. The sensor was evaluated for various concentrations of toluene. The lower limit of detection of the sensor is 15 +/- 10 ppm. The study of the effect of humidity on senor response to toluene showed that the response decreases at higher humidity conditions. The surface morphology of the nanocomposite was characterized by scanning electron microscopy. Diffuse reflectance spectroscopy was used to investigate the absorption of vapours by the nanocomposite film. Contact angle measurements were used to present the effect of water vapour on the toluene response of nanocomposite film. Solubility parameter of the conducting polymer is predicted by molecular dynamics. The sensing behaviour of the conducting polymer is correlated with solubility parameter of the polymer. Dispersion interaction of conducting polymer with toluene is believed to be the reason for the selective response towards toluene. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Dy3+ doped Y3-xDyxFe5O12 (x=0-3) nanopowders were prepared using microwave hydrothermal route. The structural and morphological studies were analyzed using transmission electron microscope, X-ray diffractometer and field emission scanning electron microscope. The nanopowders were sintered at 900 degrees C/90 min using microwave furnace. Dense ceramics with theoretical density of around 95% was obtained. Ferro magnetic resonance (FMR) spectrum and microwave absorption spectrum of Dy3+ doped YIG were studied, the signal exhibits a resonance character for all Dy3+ variations. It was observed that the location of the FMR signal peak at the field axes monotonically shifts to higher field with increasing Dy3+ content. The dielectric and magnetic properties (epsilon', epsilon `', mu' and mu `') of Dy3+ doped YIG were studied over a wide range of frequency (1-50 GHz). With increase of Dy3+ both epsilon' and mu' decreased. The low values of dielectric, magnetic properties and broad distribution of FMR line width of these ceramics are opening the real opportunity to use them for microwave devices above K- band frequency. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A plausible microkinetic model has been proposed for the CO oxidation reaction catalysed by palladium (Pd) with the kinetic parameters obtained from the literature. A robust rate expression using the reaction route analysis has been developed for the presented microkinetic scheme and the obtained rate expressions have been validated against the experimental data presented in the literature. A wide range of experimental conditions ranging from single Pd crystals under ultra-high vacuum conditions and impregnated Pd used for fixed bed experiments under atmospheric pressure has been used to validate the reaction mechanism. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.