392 resultados para thermal diffusivity coefficient


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed the technique of thermal fluctuation spectroscopy to measure the thermal fluctuations in a system. This technique is particularly useful to study the denaturation dynamics of biomolecules like DNA. Here we present a study of the thermal fluctuations during the thermal denaturation (or melting) of double-stranded DNA. We find that the thermal denaturation of heteropolymeric DNA is accompanied by large, non-Gaussian thermal fluctuations. The thermal fluctuations show a two-peak structure as a function of temperature. Calculations of enthalpy exchanged show that the first peak comes from the denaturation of AT rich regions and the second peak from denaturation of GC rich regions. The large fluctuations are almost absent in homopolymeric DNA. We suggest that bubble formation and cooperative opening and closing dynamics of basepairs causes the additional fluctuation at the first peak and a large cooperative transition from a partially molten DNA to a completely denatured state causes the additional fluctuation at the second peak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermal model for a conventional biogas plant has been developed in order to understand the heat transfer from the slurry and the gas holder to the surrounding earth and air respectively. The computations have been performed for two conditions : (i) when the slurry is at an ambient temperature of 20°C, and (ii) when it is at 35°C, the optimum temperature for anaerobic fermentation. Under both these conditions, the gas holder is the major “culprit” with regard to heat losses from the biogas plant. The calculations provide an estimate for the heat which has to be supplied by external means to compensate for the net heat losses which occur if the slurry is to be maintained at 35°C. Even if this external supply of heat is realised through (the calorific value of) biogas, there is a net increase in the biogas output, and therefore a net benefit, by operating the plant at 35°C. At this elevated temperature, the cooling effect of adding the influent at ambient temperature is not insignificant. In conclusion, the results of the thermal analysis are used to define a strategy for operating biogas plants at optimum temperatures, or at higher temperatures than the ambient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability of ring-substituted arylammonium nitrates has been investigated using thermal methods of analysis. The decomposition temperature of meta- and para-substituted derivatives is found to be linearly related to the Hammett substituent constant σ. The activation energy for decomposition determined by isothermal gravimetry increases with the increasing basicity of the corresponding amine. The results suggest that the primary step in the decomposition process of these salts is proton abstraction by the anion from the arylammonium ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrazinium metal chlorides, (N2H5)2MCl4·2H2O (where M = Fe, Co, Ni and Cu), have been prepared from the aqueous solutions of the respective metal chlorides and hydrazine hydrochloride (N2H4·HCl or N2H4·2HCl) and investigated by spectral and thermal analyses. The crystal structure of the iron complex has been determined by direct methods and refined by full-matrix least-squares to an R of 0.023 and Rw of 0.031 for 1495 independent reflections. The structure shows ferrous ion in an octahedral environment bonded by two hydrazinium cations, two chloride anions and two water molecules. In the complex cation [Fe(N2H5)2(H2O)2Cl2]2+, the coordinated groups are in trans positions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric, pyroelectric and thermal properties of ferroelectric Bi2VO5.5(Bi4V2O11) ceramic have been studied over a temperature range of 300-780 K. The sign of the pyroelectric coefficient is positive at room temperature. The dielectric constant, pyroelectric coefficient and specific heat exhibit anomalies around the Curie temperature, 725 K. The frequency response of the dielectric constant and tan delta has been studied over a frequency range of 1-100 kHz. It is found that both the dielectric constant and the loss tangent decrease with increasing frequency. The pyroelectric figures of merit from the point of view of different applications have been calculated at 320 K by combining pyroelectric, dielectric and thermal properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular dynamics study of model ions in water is reported. The van der Waals diameter of both the cations and anions is varied. We have carried out two sets of simulations-with and without dispersion interaction-between the ion and water. Self-diffusivity of the ions exhibits an anomalous maximum as a function of the van der Waals diameter for both these sets. This existence of a maximum in self-diffusivity when there is no dispersion interaction between the ion and the water is attributed to the attractive term from electrostatic interactions. Detailed analysis of this effect shows that the solvent shell is more strongly defined in the presence of dispersion interactions. A smaller ion exhibits biexponential decay while a single exponential decay is seen for the ion with maximum diffusivity in the self-part of the intermediate scattering function. The solvent structure around the ion appears to determine much of the dynamics of the ion. Interesting trends are seen in the activation energies and these can be understood in terms of the levitation effect. (C) 2010 American Institute of Physics. doi:10.1063/1.3481656]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aryloxy(alkoxy)cyclotriphosphazenes N3P3(OR)6�m(OC6H4Me-p)n(R = Me, n= 1�3; R = Et or CH2Ph, n= 3) rearrange on heating to give trioxocyclotriphosphazanes; the di- and mono-methoxy derivatives, N3P3(OMe)6�n(OC6H4Me-p)n(n= 4 or 5), yield dioxophosphaz-1-enes and an oxophosphazadiene respectively. The 1H, 13C and 31P NMR data for the starting materials and the products are presented. No evidence has been found for partially rearranged products. The geometrical disposition of the aryloxy groups in the starting material is retained in the rearranged products. Some aspects of the mechanism of the thermal rearrangement are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyamide-phosphate esters were synthesized by interfacial polycondensation of aryl phosphorodichloridates with the diols of phenoxaphosphine and phosphine oxide in the presence of a phase-transfer catalyst. The polymers were characterized by infra-red and 1H, 13C and 31P nuclear magnetic resonance (n.m.r.) spectroscopy. The molecular weights were determined by end-group analysis using 31P n.m.r. spectral data. The phenoxaphosphine-containing polymers showed superior thermostability and flame retardancy over the phosphine-oxide-containing polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High nonlinearity coefficients of 60–150 are observed in the current‐voltage (I‐V) curves of the mixed phase ceramics formed by cosintering ZnO with spinel phases having large negative temperature coefficients (NTCs) in resistivity. The region of negative slope in the I‐V curves of the NTC ceramics is progressively made positive with ZnO phase content, wherein ZnO grains function as a built‐in resistor in series to the resistance of the NTC phase. High α depends on the optimum phase content of ZnO as much as its intrinsic conductivity. The studies indicate that the predominent contribution to power dissipation is by way of joule heating from the resistive component of the current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several samples of poly(vinyl formal) having the same vinyl alcohol content (8–9%) but varying contents of vinyl acetate (6–22%) and vinyl formol (70–85%) were prepared and subjected to thermogravimetric analysis, in air and nitrogen atmospheres, employing both isothermal and dynamic methods. Kinetic parameters determined from both the isothermal and dynamic TGA data are compared. The activation energy is seen to be largely dependent on the degree of conversion, implying a complex degradation reaction. The activation energy is also much less for degradation in air than in nitrogen, which can be explained by a reaction with oxygen-producing structures favoring degradation. The activation energy is less sensitive to variation in polymer composition for degradation in air than in nitrogen. Thus, in the dynamic process, the activation energy value decreases (from 36 to 23 kcal/mole) with increasing acetate content (from 6 to 22%) in nitrogen atmosphere, while in air the activation energy value increases only moderately (from 21 to 27 kcal/mole) with increasing acetate content (from 6 to 22%). The order of reaction is nearly unity, irrespective of the composition of the polymer, both in air and nitrogen.