326 resultados para stability distributions
Resumo:
This paper presents a new voltage stability index based on the tangent vector of the power flow jacobian. This index is capable of providing the relative vulnerability information of the system buses from the point of view of voltage collapse. In an effort to compare this index with a similar index, the popular voltage stability index L is studied and it is shown through system studies that the L index is not a very consistent indicator of the voltage collapse point of the system but is only a reasonable indicator of the vulnerability of the system buses to voltage collapse. We also show that the new index can be used in the voltage stability analysis of radial systems which is not possible with the L index. This is a significant result of this investigation since there is a lot of contemporary interest in distributed generation and microgrids which are by and large radial in nature. Simulation results considering several test systems are provided to validate the results and the computational needs of the proposed scheme is assessed in comparison with other schemes
Resumo:
In this paper, an approach for target component and system reliability-based design optimisation (RBDO) to evaluate safety for the internal seismic stability of geosynthetic-reinforced soil (GRS) structures is presented. Three modes of failure are considered: tension failure of the bottom-most layer of reinforcement, pullout failure of the topmost layer of reinforcement, and total pullout failure of all reinforcement layers. The analysis is performed by treating backfill properties, geometric and strength properties of reinforcement as random variables. The optimum number of reinforcement layers and optimum pullout length needed to maintain stability against tension failure, pullout failure and total pullout failure for different coefficients of variation of friction angle of the backfill, design strength of the reinforcement and horizontal seismic acceleration coefficients by targeting various system reliability indices are proposed. The results provide guidelines for the total length of reinforcement required, considering the variability of backfill as well as seismic coefficients. One illustrative example is presented to explain the evaluation of reliability for internal stability of reinforced soil structures using the proposed approach. In the second illustration (the stability of five walls), the Kushiro wall subjected to the Kushiro-Oki earthquake, the Seiken wall subjected to the Chiba-ken Toho-Oki earthquake, the Ta Kung wall subjected to the Ji-Ji earthquake, and the Gould and Valencia walls subjected to Northridge earthquake are re-examined.
Resumo:
We present a nonequilibrium strong-coupling approach to inhomogeneous systems of ultracold atoms in optical lattices. We demonstrate its application to the Mott-insulating phase of a two-dimensional Fermi-Hubbard model in the presence of a trap potential. Since the theory is formulated self-consistently, the numerical implementation relies on a massively parallel evaluation of the self-energy and the Green's function at each lattice site, employing thousands of CPUs. While the computation of the self-energy is straightforward to parallelize, the evaluation of the Green's function requires the inversion of a large sparse 10(d) x 10(d) matrix, with d > 6. As a crucial ingredient, our solution heavily relies on the smallness of the hopping as compared to the interaction strength and yields a widely scalable realization of a rapidly converging iterative algorithm which evaluates all elements of the Green's function. Results are validated by comparing with the homogeneous case via the local-density approximation. These calculations also show that the local-density approximation is valid in nonequilibrium setups without mass transport.
Resumo:
This work assesses the performance of small biogas-fuelled engines and explores high-efficiency strategies for power generation in the very low power range of less than 1000 W. Experiments were performed on a small 95-cc, single-cylinder, four-stroke spark-ignition engine operating on biogas. The engine was operated in two modes, i.e., `premixed' and `fuel injection' modes, using both single and dual spark plug configurations. Measurements of in-cylinder pressure, crank angle, brake power, air and fuel flow rates, and exhaust emissions were conducted. Cycle-to-cycle variations in engine in-cylinder pressure and power were also studied and assessed quantitatively for various loading conditions. Results suggest that biogas combustion can be fairly sensitive to the ignition strategies thereby affecting the power output and efficiency. Further, results indicate that continuous fuel injection shows superior performance compared to the premixed case especially at low loads owing to possible charge stratification in the engine cylinder. Overall, this study has demonstrated for the first time that a combination of technologies such as lean burn, fuel injection, and dual spark plug ignition can provide highly efficient and stable operation in a biogas-fuelled small S.I. engine, especially in the low power range of 450-1000W. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.
Resumo:
Filamentary structures are ubiquitous in astrophysics and are observed at various scales. On a cosmological scale, matter is usually distributed along filaments, and filaments are also typical features of the interstellar medium. Within a cosmic filament, matter can contract and form galaxies, whereas an interstellar gas filament can clump into a series of bead-like structures that can then turn into stars. To investigate the growth of such instabilities, we derive a local dispersion relation for an idealized self-gravitating filament and study some of its properties. Our idealized picture consists of an infinite self-gravitating and rotating cylinder with pressure and density related by a polytropic equation of state. We assume no specific density distribution, treat matter as a fluid, and use hydrodynamics to derive the linearized equations that govern the local perturbations. We obtain a dispersion relation for axisymmetric perturbations and study its properties in the (kR, kz) phase space, where kR and kz are the radial and longitudinal wavenumbers, respectively. While the boundary between the stable and unstable regimes is symmetrical in kR and kz and analogous to the Jeans criterion, the most unstable mode displays an asymmetry that could constrain the shape of the structures that form within the filament. Here the results are applied to a fiducial interstellar filament, but could be extended for other astrophysical systems, such as cosmological filaments and tidal tails.
Resumo:
The standard Q criterion (with Q > 1) describes the stability against local, axisymmetric perturbations in a disk supported by rotation and random motion. Most astrophysical disks, however, are under the influence of an external gravitational potential, which can significantly affect their stability. A typical example is a galactic disk embedded in a dark matter halo. Here, we do a linear perturbation analysis for a disk in an external potential and obtain a generalized dispersion relation and the effective stability criterion. An external potential, such as that due to the dark matter halo concentric with the disk, contributes to the unperturbed rotational field and significantly increases its stability. We obtain the values for the effective Q parameter for the Milky Way and for a low surface brightness galaxy, UGC 7321. We find that in each case the stellar disk by itself is barely stable and it is the dark matter halo that stabilizes the disk against local, axisymmetric gravitational instabilities. Thus, the dark matter halo is necessary to ensure local disk stability. This result has been largely missed so far because in practice the Q parameter for a galactic disk is obtained using the observed rotational field that already includes the effect of the halo
Resumo:
Multiple methods currently exist for rapid construction and screening of single-site saturation mutagenesis (SSM) libraries in which every codon or nucleotide in a DNA fragment is individually randomized. Nucleotide sequences of each library member before and after screening or selection can be obtained through deep sequencing. The relative enrichment of each mutant at each position provides information on its contribution to protein activity or ligand-binding under the conditions of the screen. Such saturation scans have been applied to diverse proteins to delineate hot-spot residues, stability determinants, and for comprehensive fitness estimates. The data have been used to design proteins with enhanced stability, activity and altered specificity relative to wild-type, to test computational predictions of binding affinity, and for protein model discrimination. Future improvements in deep sequencing read lengths and accuracy should allow comprehensive studies of epistatic effects, of combinational variation at multiple sites, and identification of spatially proximate residues.
Resumo:
Load and resistance factor design (LRFD) approach for the design of reinforced soil walls is presented to produce designs with consistent and uniform levels of risk for the whole range of design applications. The evaluation of load and resistance factors for the reinforced soil walls based on reliability theory is presented. A first order reliability method (FORM) is used to determine appropriate ranges for the values of the load and resistance factors. Using pseudo-static limit equilibrium method, analysis is conducted to evaluate the external stability of reinforced soil walls subjected to earthquake loading. The potential failure mechanisms considered in the analysis are sliding failure, eccentricity failure of resultant force (or overturning failure) and bearing capacity failure. The proposed procedure includes the variability associated with reinforced backfill, retained backfill, foundation soil, horizontal seismic acceleration and surcharge load acting on the wall. Partial factors needed to maintain the stability against three modes of failure by targeting component reliability index of 3.0 are obtained for various values of coefficients of variation (COV) of friction angle of backfill and foundation soil, distributed dead load surcharge, cohesion of the foundation soil and horizontal seismic acceleration. A comparative study between LRFD and allowable stress design (ASD) is also presented with a design example. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A numerical formulation has been proposed for solving an axisymmetric stability problem in geomechanics with upper bound limit analysis, finite elements, and linear optimization. The Drucker-Prager yield criterion is linearized by simulating a sphere with a circumscribed truncated icosahedron. The analysis considers only the velocities and plastic multiplier rates, not the stresses, as the basic unknowns. The formulation is simple to implement, and it has been employed for finding the collapse loads of a circular footing placed over the surface of a cohesive-frictional material. The formulation can be used to solve any general axisymmetric geomechanics stability problem.
Resumo:
standard Q criterion (with Q > 1) describes the stability against local, axisymmetric perturbations in a disk supported by rotation and random motion. Most astrophysical disks, however, are under the influence of an external gravitational potential, which can significantly affect their stability. A typical example is a galactic disk embedded in a dark matter halo. Here, we do a linear perturbation analysis for a disk in an external potential and obtain a generalized dispersion relation and the effective stability criterion. An external potential, such as that due to the dark matter halo concentric with the disk, contributes to the unperturbed rotational field and significantly increases its stability. We obtain the values for the effective Q parameter for the Milky Way and for a low surface brightness galaxy, UGC 7321. We find that in each case the stellar disk by itself is barely stable and it is the dark matter halo that stabilizes the disk against local, axisymmetric gravitational instabilities. Thus, the dark matter halo is necessary to ensure local disk stability. This result has been largely missed so far because in practice the Q parameter for a galactic disk is obtained using the observed rotational field that already includes the effect of the halo.
Resumo:
The stability of a long circular tunnel in a cohesive frictional soil medium has been determined in the presence of horizontal pseudo-static seismic body forces. The tunnel is supported by means of lining and anchorage system which is assumed to exert uniform internal compressive normal pressure on its periphery. The upper bound finite element limit analysis has been performed to compute the magnitude of the internal compressive pressure required to support the tunnel. The results have been presented in terms of normalized compressive normal stress, defined in terms of sigma(i)/c; where sigma(i) is the magnitude of the compressive normal pressure on the periphery of the tunnel and c refers to soil cohesion. The variation of sigma(i)/c with horizontal earthquake acceleration coefficient (alpha(h)) has been established for different combinations of H/D, gamma D/c and phi where (i) H and D refers to tunnel cover and diameter, respectively, and (ii) gamma and phi correspond to unit weight and internal friction angle of soil mass, respectively. Nodal velocity patterns have also been plotted for assessing the zones of significant plastic deformation. The analysis clearly reveals that an increase in the magnitude of the earthquake acceleration leads to a significant increment in the magnitude of internal compressive pressure. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A methodology has been presented for determining the stability of unsupported vertical cylindrical excavations by using an axisymmetric upper bound limit analysis approach in conjunction with finite elements and linear optimization. For the purpose of excavation design, stability numbers (S-n) have been generated for both (1) cohesive-frictional soils and (2) pure cohesive soils, with an additional provision accounting for linearly increasing cohesion with increasing depth by means of a nondimensional factor m. The variation of S-n with H/b has been established for different values of m and phi, where H and b refer to the height and radius of the cylindrical excavation. A number of useful observations have been gathered about the variation of the stability number and nodal velocity patterns as H/b, phi, and m change. The results of the analysis compare quite well with the different solutions reported in the literature. (C) 2014 American Society of Civil Engineers.
Resumo:
Scaling behaviour has been observed at mesoscopic level irrespective of crystal structure, type of boundary and operative micro-mechanisms like slip and twinning. The presence of scaling at the meso-scale accompanied with that at the nano-scale clearly demonstrates the intrinsic spanning for different deformation processes and a true universal nature of scaling. The origin of a 1/2 power law in deformation of crystalline materials in terms of misorientation proportional to square root of strain is attributed to importance of interfaces in deformation processes. It is proposed that materials existing in three dimensional Euclidean spaces accommodate plastic deformation by one dimensional dislocations and their interaction with two dimensional interfaces at different length scales. This gives rise to a 1/2 power law scaling in materials. This intrinsic relationship can be incorporated in crystal plasticity models that aim to span different length and time scales to predict the deformation response of crystalline materials accurately.
Resumo:
Stability of a fracture toughness testing geometry is important to determine the crack trajectory and R-curve behavior of the specimen. Few configurations provide for inherent geometric stability, especially when the specimen being tested is brittle. We propose a new geometrical construction called the single edge notched clamped bend specimen (SENCB), a modified form of three point bending, yielding stable cracking under load control. It is shown to be particularly suitable for small-scale structures which cannot be made free-standing, (e.g., thin films, coatings). The SENCB is elastically clamped at the two ends to its parent material. A notch is inserted at the bottom center and loaded in bending, to fracture. Numerical simulations are carried out through extended finite element method to derive the geometrical factor f(a/W) and for different beam dimensions. Experimental corroborations of the FEM results are carried out on both micro-scale and macro-scale brittle specimens. A plot of vs a/W, is shown to rise initially and fall off, beyond a critical a/W ratio. The difference between conventional SENB and SENCB is highlighted in terms of and FEM simulated stress contours across the beam cross-section. The `s of bulk NiAl and Si determined experimentally are shown to match closely with literature values. Crack stability and R-curve effect is demonstrated in a PtNiAl bond coat sample and compared with predicted crack trajectories from the simulations. The stability of SENCB is shown for a critical range of a/W ratios, proving that it can be used to get controlled crack growth even in brittle samples under load control.