297 resultados para single-molecule studies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-pot synthesis of amorphous iron oxide nanoparticles with two different dimensions (<5 nm and 60 nm) has been achieved using the reverse micelle method, with <5 nm nanoparticles separated from the stable colloid by exploiting their magnetic behaviour. The transformation of the as-prepared amorphous powders into Fe3O4 and Fe2O3 phases (gamma and alpha) is achieved by carrying out controlled annealing at elevated temperatures under different optimized conditions. The as-prepared samples resulting from micellar synthesis and the corresponding annealed ones are thoroughly characterized by powder X-ray diffraction, transmission electron microscopy (TEM), and by Raman and X-ray photoelectron spectroscopies. Expectedly, the magnetic characteristics of Fe3O4 and Fe2O3 phase (gamma and alpha) nanoparticles are found to have strong dependence on their phase, dimension, and morphology. The coercivity of Fe3O4 and Fe2O3 (gamma and alpha) nanoparticles is reasonably high, even though high resolution TEM studies bring out that these nanoparticles are single crystalline. This is in contrast with previous reports wherein poly-crystallinity of iron oxides nanoparticles has been regarded as a prerequisite for high coercivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription from rrn and a number of other promoters is regulated by initiating ribonucleotides (iNTPs) and guanosine tetra/penta phosphate (p)ppGpp], either by strengthening or by weakening of the RNA polymerase (RNAP)-promoter interactions during initiation. Studies in Escherichia coli revealed the importance of a sequence termed discriminator, located between -10 and the transcription start site of the responsive promoters in this mode of regulation. Instability of the open complex at these promoters is attributed to the lack of stabilizing interactions between the suboptimal discriminator and the 1.2 region of sigma 70 (Sig70) in RNAP holoenzyme. We demonstrate a different pattern of interaction between the promoters and sigma A (SigA) of Mycobacterium tuberculosis to execute similar regulation. Instead of cytosine and methionine, thymine at three nucleotides downstream to -10 element and leucine 232 in SigA are found to be essential for iNTPs and pppGpp mediated response at the rrn and gyr promoters of the organism. The specificity of the interaction is substantiated by mutational replacements, either in the discriminator or in SigA, which abolish the nucleotide mediated regulation in vitro or in vivo. Specific yet distinct bases and the amino acids appear to have co-evolved' to retain the discriminator-sigma 1.2 region regulatory switch operated by iNTPs/pppGpp during the transcription initiation in different bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The frequency-dependent dielectric relaxation of Pb0.94Sr0.06](Mn1/3Sb2/3)(0.05)(Zr0.52Ti0.48)(0.95)]O-3 ceramics, synthesized in pure perovskite phase by a solid-state reaction technique is investigated in the temperature range from 303 to 773 K by alternating-current impedance spectroscopy. Using Cole-Cole model, an analysis of the imaginary part of the dielectric permittivity with frequency is performed assuming a distribution of relaxation times. The scaling behavior of the imaginary part of the electric modulus suggests that the relaxation describes the same mechanism at various temperatures. The variation of dielectric constant with temperature is explained considering the space-charge polarization. The SEM indicates that the sample has single phase with an average grain size similar to 14.2 mu m. The material exhibits tetragonal structure. A detailed temperature dependent dielectric study at various frequencies has also been performed. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four binuclear copper (II) complexes Cu(oxpn)Cu(B)](2+) (2-5) bridged by N, N'-bis3-(methylamino) propyl] oxamide (oxpn), where, B is N, N-donor heterocyclic bases (viz. 2,2'-bipyridine (bpy, 2), 1,10-phenathroline (phen, 3), dipyrido3,2-d:2',3'-f]quinoxaline (dpq, 4) and dipyrido3,2-a:2',3'-c]phenazine (dppz, 5) are synthesized, characterized by different spectroscopic and single crystal X-ray data technique. The phen (3) and dpq (4) complexes were structurally characterized by X-ray data analysis. Their DNA binding, oxidative cleavage and antibactirial activities were studied. The dpq (4) and dppz (5) complexes are avid binders to the Calf thymus DNA (CT-DNA). The phen (3), dpq (4) and dppz (5) complexes show efficient oxidative cleavage of supercoiled DNA (SC DNA) through hydroxyl radical ((OH)-O-center dot) pathway in the presence of Mercaptopropionic acid (MPA). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies were carried out to assess the utility of the cellular and extracellular constituents of Bacillus megaterium for the flotation of sphalerite and galena minerals. Based on the flotation results on the individual minerals, it was observed that sphalerite was preferentially floated compared to galena. A maximum selectivity index (SI) value of 11.7 was achieved in the presence of the soluble fraction of the thermolysed cells, which was higher than that obtained with the intact cells (SI of 6.5) and the insoluble fraction of the thermolysed cells (SI of 9.6). The results of the various enzymatic treatment tests revealed that extracellular DNA played a vital role in the selective flotation of sphalerite. A noteworthy finding was that the single-stranded DNA (ssDNA) had a higher biocollector capacity vis-A -vis the double-stranded DNA (dsDNA), leading to better flotation efficiency. About 95 % recovery of sphalerite could be achieved from the mineral mixture by the combined addition of the ssDNA with the non-DNA components of the bacterial cells, resulting in a maximum SI of 19.1. Calcium and phosphate components of the nutrient media were found to be essential for better selectivity of separation of sphalerite. The mechanisms of microbe-mineral interaction are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-stranded DNA (ss-DNA) oligomers (dA(20), d(C(3)TA(2))(3)C-3] or dT(20)) are able to disperse single-walled carbon nanotubes (SWNTs) in water at pH 7 through non-covalent wrapping on the nanotube surface. At lower pH, an alteration of the DNA secondary structure leads to precipitation of the SWNTs from the dispersion. The structural change of dA(20) takes place from the single-stranded to the A-motif form at pH 3.5 while in case of d(C(3)TA(2))(3)C-3] the change occurs from the single-stranded to the i-motif form at pH 5. Due to this structural change, the DNA is no longer able to bind the nanotube and hence the SWNT precipitates from its well-dispersed state. However, this could be reversed on restoring the pH to 7, where the DNA again relaxes in the single-stranded form. In this way the dispersion and precipitation process could be repeated over and over again. Variable temperature UV-Vis-NIR and CD spectroscopy studies showed that the DNA-SWNT complexes were thermally stable even at similar to 90 degrees C at pH 7. Broadband NIR laser (1064 nm) irradiation also demonstrated the stability of the DNA-SWNT complex against local heating introduced through excitation of the carbon nanotubes. Electrophoretic mobility shift assay confirmed the formation of a stable DNA-SWNT complex at pH 7 and also the generation of DNA secondary structures (A/i-motif) upon acidification. The interactions of ss-DNA with SWNTs cause debundling of the nanotubes from its assembly. Selective affinity of the semiconducting SWNTs towards DNA than the metallic ones enables separation of the two as evident from spectroscopic as well as electrical conductivity studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current communication, we report the synthesis, spectroscopic, crystal structure, DFT and photophysical studies of a new nicotinonitrile derivative, viz. 2-methoxy-6-(4-methoxy-phenyl)-4-p-tolyl-nicotinonitrile (2) as a potential blue light emitting material. The compound 2 was synthesized in good yield via a simple route. The acquired spectral and elemental analysis data were in consistent with the chemical structure of 2. The single crystal study further confirms its three dimensional structure, molecular shape, and nature of short contacts. Its DFT calculations reveal that compound 2 possesses a non-planar structure and its theoretical IR spectral data are found to be in accordance with experimental values. In addition, its UV visible and fluorescence spectral measurements prove that the compound exhibits good absorption and fluorescence properties. Also, it shows positive solvatochromic effect when the solvent polarity was varied from non-polar to polar. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, the spray structure of diesel from a 200-mu m, single-hole solenoid injector is studied using microscopic imaging at injection pressures of 700, 1000 and 1400 bar for various gas pressures. A long-distance microscope with a high resolution camera is used for spray visualization with a direct imaging technique. This study shows that even at very high injection pressures, the spray structure in an ambient environment of atmospheric pressure reveals presence of entangled ligaments and non-spherical droplets during the injection period. With increase in the injection pressure, the ligaments tend to get smaller and spread radially. The spray structure studies are also conducted at high gas pressures in a specially designed high pressure chamber with optical access. The near nozzle spray structure at the end of the injection shows that the liquid jet breakup is improved with increase in gas density. The droplet size measurement is possible only late in the injection duration when the breakup appears to be complete and mostly spherical droplets are observed. Hence, droplet size measurements are performed after 1.3 ms from start of the injection pulse. Spatial and temporal variation in Sauter Mean `Diameter (SMD) is observed and reported for the case corresponding to an injection pressure of 700 bar. Overall, this study has highlighted the importance of verifying the extentof atomization and droplet shape even in dense sprays before using conventional dropsizing methods such as PDPA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bent-core mesogens are an important class of thermotropic liquid crystals as they exhibit unusual properties as well as morphologies distinctly different from rodlike mesogens. Two bent-core mesogens with differing center rings namely benzene and thiophene are considered and investigated using high-resolution oriented solid state C-13 NMR method in their liquid crystalline phases. The mesogens exhibit different phase sequences with the benzene-based mesogen showing a B-1 phase, while the one based on thiophene showing nematic and smectic C phases. The 2-dimensional separated local field (2D-SLF) NMR method was used to obtain the C-13-H-1 dipolar couplings of carbons in the center ring as well as in the side-wing phenyl rings. Couplings, characteristic of the type of the center ring, that also provide orientational information on the molecule in the magnetic field were observed. Together with the dipolar couplings of the side-wing phenyl ring carbons from which the local order parameters of the different subunits of the core could be extracted, the bent angle of the mesogenic molecule could be obtained. Accordingly, for the benzene mesogen in its B-1 phase at 145 degrees C, the center ring methine C-13-H-1 dipolar couplings were found to be significantly larger (9.5-10.2 kHz) compared to those of the side-wing rings (1.6-2.1 kHz). From the local order parameter values of the center (0.68) as well as the side-wing rings (0.50), a bent-angle of 130.3 degrees for this mesogen was obtained. Interestingly, for the thiophene mesogen in its smectic C phase at 210 degrees C, the C-13-H-1 dipolar coupling of the center ring methine carbon (2.11 kHz) is smaller than those of the side-wing phenyl ring carbons (2.75-3.00 kHz) which is a consequence of the different structures of the thiophene and the benzene rings. These values correspond to local order parameters of 0.85 for the center thiophene ring and 0.76 for the first side-wing phenyl ring and a bent-angle of 149.2 degrees. Thus, the significant differences in the dipolar couplings and the order parameter values between different parts in the rigid core of the mesogens are a direct consequence of the nature of the center ring and the bent structure of the molecule. The present investigation thus highlights the ability of the C-13 2D-SLF technique to provide the geometry of the bent-core mesogens in a straightforward manner through the measurement of the C-13-H-1 dipolar couplings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new 2-(2-aminophenyl)benzimidazole-based HSO4- ion selective receptors, 6-(4-nitrophenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c]quinazoline (L1H) and 6-(4-methoxyphenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c] quinazoline (L2H), and their 1 : 1 molecular complexes with HSO4- were prepared in a facile synthetic method and characterized by physicochemical and spectroscopic techniques along with the detailed structural analysis of L1H by single crystal X-ray crystallography. Both receptors (L1H and L2H) behave as highly selective chemosensor for HSO4- ions at biological pH in ethanol-water HEPES buffer (1/5) (v/v) medium over other anions such as F-, Cl-, Br-, I-, AcO-, H2PO4-, N-3(-) and ClO4-. Theoretical and experimental studies showed that the emission efficiency of the receptors (L1H and L2H) was tuned successfully through single point to ratiometric detection by employing the substituent effects. Using 3 sigma method the LOD for HSO4- ions were found to be 18.08 nM and 14.11 nM for L1H and L2H, respectively, within a very short responsive time (15-20 s) in 100 mM HEPES buffer (ethanol-water: 1/5, v/v). Comparison of the utility of the probes (L1H and L2H) as biomarkers for the detection of intracellular HSO4- ions concentrations under a fluorescence microscope has also been included and both probes showed no cytotoxic effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovative bi-electrolyte solid-state cells incorporating single crystal CaF2 and composition-graded solid electrolyte (LaF3) y (CaF2) 1-y (y = 0 to 0.32) were used for measurement of the standard Gibbs energy of formation of hexagonal La0.885Al11.782O19 and cubic LaAlO3 from component binary oxides La2O3 and alpha-Al2O3 in the temperature range from 875 to 1175 K. The cells were designed based on experimentally verified relevant phase relations in the systems La2O3-Al2O3LaF3 and CaF2-LaF3. The results can be summarized as: 5.891 alpha-Al2O3 + 0.4425 La2O3 (A-rare earth)-> La0.885Al11.782O19 (hex), Delta G(f(ox))(degrees)(+/- 2005)/Jmol(-1) = -80982 + 7.313(T/K); 1/2 La2O3 (A-rare earth) + 1/2 a-Al2O3 -> LaAlO3 (cubic), Delta G(f(ox))(degrees)(+/- 2100)/Jmol(-1) = -59810 + 4.51(T/K). Electron probe microanalysis was used to ascertain the non-stoichiometric range of the hexaaluminate phase. The results are critically analyzed in the light of earlier electrochemical measurements. Several imperfections in the electrochemical cells used by former investigators are identified. Data obtained in the study for LaAlO3 are consistent with calorimetric enthalpy of formation and entropy derived from heat capacity data. Estimated are the standard entropy and the standard enthalpy of formation from elements of hexagonal La0.885Al11.782O19 and rhombohedral LaAlO3 at 298.15 K. c 2014 The Electrochemical Society. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal decomposition of propargyl alcohol (C3H3OH), a molecule of interest in interstellar chemistry and combustion, was investigated using a single pulse shock tube in the temperature ranging from 953 to 1262 K. The products identified include acetylene, propyne, vinylacetylene, propynal, propenal, and benzene. The experimentally observed overall rate constant for thermal decomposition of propargyl alcohol was found to be k = 10((10.17 +/- 0.36)) exp(-39.70 +/- 1.83)/RT) s(-1) Ab initio theoretical calculations were carried out to understand the potential energy surfaces involved in the primary and secondary steps of propargyl alcohol thermal decomposition. Transition state theory was used to predict the rate constants, which were then used and refined in a kinetic simulation of the product profile. The first step in the decomposition is C-O bond dissociation, leading to the formation of two important radicals in combustion, OH and propargyl. This has been used to study the reverse OH propargyl radical reaction, about which there appears to be no prior work. Depending on the site of attack, this reaction leads to propargyl alcohol or propenal, one of the major products at temperatures below 1200 K. A detailed mechanism has been derived to explain all the observed products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three copper-azido complexes Cu-4(N-3)(8)(L-1)(2)(MeOH)(2)](n) (1), Cu-4(N-3)(8)(L-1)(2)] (2), and Cu-5(N-3)(10)(L-1)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with 2-(2-pyridyl)ethylamine] have been synthesized using lower molar equivalents of the Schiff base ligand with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of the complexes 1 and 2 contains Cu-4(II) building blocks; however, they have distinct basic and overall structures due to a small change in the bridging mode of the peripheral pair of copper atoms in the linear tetranudear structures. Interestingly, these changes are the result of changing the solvent system (MeOH/H2O to EtOH/H2O) used for the synthesis, without changing the proportions of the components (metal to ligand ratio 2:1). Using even lower proportions of the ligand, another unique complex was isolated with Cu-5(II) building units, forming a two-dimensional complex (3). Magnetic susceptibility measurements over a wide range of temperature exhibit the presence of both antiferromagnetic (very weak) and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional, and two different basis sets) have been performed on the complexes 1 and 2 to provide a qualitative theoretical interpretation of their overall magnetic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rod like structures of hexagonal Y(OH)(3):Ni2+ and cubic Y2O3:Ni2+ phosphors have been successfully synthesized by solvothermal method. X-ray diffraction studies of as-formed product shows hexagonal phase, whereas the product heat treated at 700 degrees C shows pure cubic phase. Scanning electron micrographs (SEM) of Y(OH)(3):Ni2+ show hexagonal rods while Y2O3:Ni2+ rods were found to consist of many nanoparticles stacked together forming multi-particle-chains. EPR studies suggest that the site symmetry around Ni2+ ions is predominantly octahedral. PL spectra show emission in blue, green and red regions due to the T-3(1)(P-3)->(3)A(2)(F-3), T-1(2)(D-1)->(3)A(2)(F-3) and T-1(2)(D-1)-> T-3(2)(F-3) transitions of Ni2+ ions, respectively. TL studies were carried out for Y(OH)(3):Ni2+ and Y2O3:Ni2+ phosphor upon gamma-dose for 1-6 kGy. A single well resolved glow peaks at 195 and 230 degrees C were recorded for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The glow peak intensity increases linearly up to 4 kGy and 5 kGy for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were estimated by different methods. The phosphor follows simple glow peak structure, linear response with gamma dose, low fading and simple trap distribution, suggesting that it is quite suitable for radiation dosimetry. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In composite solid propellants, the fuel and oxidizer are held together by a polymer binder. Among the different types of polymeric binders used in solid propellants, hydroxyl terminated polybutadiene (HTPB) is considered as the most versatile. HTPB is conventionally cured using isocyanates to form polyurethanes. However, the incompatibility of isocyanates with energetic oxidizers such as ammonium dinitramide and hydrazinium nitroformate, the short pot life of the propellant slurry, and undesirable side reactions with moisture are limiting factors which adversely affect the mechanical properties of HTPB based propellant. With an aim of resolving these problems, HTPB was chemically transformed to azidoethoxy carbonyl amine terminated polybutadiene and propargyloxy carbonyl amine terminated polybutadiene by adopting appropriate synthesis strategies and characterizing them by spectroscopic and chromatographic techniques. This is the first report on 1,3-dipolar addition reaction involving azide and alkyne end groups for cross-linking HTPB. The blend of these two polymers underwent curing under mild temperature (60 degrees C) conditions through 1,3-dipolar cycloaddition reaction resulting in triazoletriazoline networks. The curing parameters were studied using differential scanning calorimetry. The kinetic parameter, viz., activation energy, was computed to be 107.6 kJ/mol, the preexponential factor was 2.79 x 10(12) s-(1), and the rate constant at 60 degrees C was computed to be 3.64 x 10-(5) s-(1). The cure profile at a given temperature was predicted using the kinetic parameters. Rheological studies revealed that the gel time for curing through the 1,3-dipolar addition is 280 min compared to 120 min for curing through the urethane route. The mechanical properties of the resultant cured polybutadiene network were superior to those of polyurethanes. The cured triazolinetriazole polymer network exhibited biphasic morphology with two glass transitions (T-g) at -56 and 42 degrees C in contrast to the polyurethane which exhibited a single transition at -60 degrees C. This was corroborated by associated morphological changes observed by scanning probe microscopy. The propellant processed using this binder has the advantages of improved pot life as indicated by the end of the mix viscosity which is 165 Pas as compared with 352 Pas for the polyurethane system along with a slow build- up rate. The mechanical properties of the propellant are superior to polyurethane with an improvement of 14% in tensile strength, 22% enhancement in elongation at break, and 12% in modulus.