324 resultados para mass reduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design optimisation of a helicopter rotor blade is performed. The objective is to reduce helicopter vibration and constraints are put on frequencies and aeroelastic stability. The ply angles of the D-spar and skin of the composite rotor blade with NACA 0015 aerofoil section are considered as design variables. Polynomial response surfaces and space filling experimental designs are used to generate surrogate models of the objective function with respect to cross-section properties. The stacking sequence corresponding to the optimal cross-section is found using a real-coded genetic algorithm. Ply angle discretisation of 1 degrees, 15 degrees, 30 degrees and 45 degrees are used. The mean value of the objective function is used to find the optimal blade designs and the resulting designs are tested for variance. The optimal designs show a vibration reduction of 26% to 33% from the baseline design. A substantial reduction in vibration and an aeroelastically stable blade is obtained even after accounting for composite material uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various 1-acyl-2,4,10-trioxaadamantanes were prepared from the corresponding 1-methoxycarbonyl derivatives, via conversion to the N-acylpiperidine derivatives followed by reaction with a Grignard reagent in refluxing THF. These alpha-keto orthoformates were converted to the corresponding imines with 1-(S)-phenethyl amine (TiCl4/Et3N/toluene/reflux), with the Schiff bases being reduced further with NaBH4 (MeOH/0 degrees C) into the corresponding 1-(S)-phenethyl amines (diastereomeric excess 91:9 by NMR). Hydrogenolysis of the phenethyl group (Pd-C/MeOH) finally led to the 1-(aminoalkyl)trioxaadamantanes, which are chiral C-protected alpha-amino acids, in excellent overall yields. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims at dimensional reduction of non-linear isotropic hyperelastic plates in an asymptotically accurate manner. The problem is both geometrically and materially non-linear. The geometric non-linearity is handled by allowing for finite deformations and generalized warping while the material non-linearity is incorporated through hyperelastic material model. The development, based on the Variational Asymptotic Method (VAM) with moderate strains and very small thickness to shortest wavelength of the deformation along the plate reference surface as small parameters, begins with three-dimensional (3-D) non-linear elasticity and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a two-dimensional (2-D) plate analysis. Major contributions of this paper are derivation of closed-form analytical expressions for warping functions and stiffness coefficients and a set of recovery relations to express approximately the 3-D displacement, strain and stress fields. Consistent with the 2-D non-linear constitutive laws, 2-D plate theory and corresponding finite element program have been developed. Validation of present theory is carried out with a standard test case and the results match well. Distributions of 3-D results are provided for another test case. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass spectrometric analysis of a banyan endophyte, Bacillus subtilis K1, extract showing broad spectrum antifungal activity revealed a complex mixture of lipopeptides, iturins, surfactins, and fengycins. Fractionation by reversed-phase high performance liquid chromatography (HPLC) facilitated a detailed analysis of fengycin microheterogeneity. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric studies permitted the identification of several new fengycin variants. Four major sites of heterogeneity are identified: (1) N-terminus beta-hydroxy fatty acid moiety, where chain length variation and the presence of unsaturation occur, (2) position 6 (Ala/Val/Ile/Leu), (3) position 10 (Val/Ile) within the macrocyclic ring, and (4) Gln to Glu replacement at position 8, resulting in fengycin variants that differ in mass by 1 Da. Diagnostic fragment ions provide a quick method for localizing the sites of variation in the macrocycle or the linear segment. Subsequent establishment of the sequences is achieved by MS/MS analysis of linear fengycin species produced by hydrolysis of the macrocyclic lactone. Unsaturation in the fatty acid chain and the presence of linear precursors in the B. subtilis K1 extract are also established by mass spectrometry. The anomalous distribution of intensities within isotopic multiplets is a diagnostic for Gln/Glu replacements. High resolution mass spectrometry facilitates the identification of fengycin species differing by 1 Da by localizing the variable position (Gln(8)/Glu(8)) in the fengycin variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spring-mass-lever (SML) model is introduced in this paper for a single-input-single-output compliant mechanism to capture its static and dynamic behavior. The SML model is a reduced-order model, and its five parameters provide physical insight and quantify the stiffness and inertia(1) at the input and output ports as well as the transformation of force and displacement between the input and output. The model parameters can be determined with reasonable accuracy without performing dynamic or modal analysis. The paper describes two uses of the SML model: computationally efficient analysis of a system of which the compliant mechanism is a part; and design of compliant mechanisms for the given user-specifications. During design, the SML model enables determining the feasible parameter space of user-specified requirements, assessing the suitability of a compliant mechanism to meet the user-specifications and also selecting and/or re-designing compliant mechanisms from an existing database. Manufacturing constraints, material choice, and other practical considerations are incorporated into this methodology. A micromachined accelerometer and a valve mechanism are used as examples to show the effectiveness of the SML model in analysis and design. (C) 2012 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anatase Ag-TiO2 microwires with high sensitivity and photocatalytic activity were synthesized via polyol synthesis route followed by a simple surface modification and chemical reduction approach for attachment of silver. The superior performance of the Ag-TiO2 composite microwires is attributed to improved surface reactivity, mass transport and catalytic property as a result of wiring the TiO2 surface with Ag nanoparticles. Compared to the TiO2 microwires, Ag-TiO2 microwires exhibited three times higher sensitivity in the detection of cationic dye such as methylene blue. Photocatalytic degradation efficiency was also found to be significantly enhanced at constant illumination protocols and observation times. The improved performance is attributed to the formation of a Schottky barrier between TiO2 and Ag nanoparticles leading to a fast transport of photogenerated electrons to the Ag nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of spectral analysis of surface waves (SASW) tests were performed on asphaltic road pavements by dropping a metallic 6.5 kg sphere, from a height (H) ranging from 1 to 3 m. Various combinations of source to first receiver distance (S) and receiver spacing (X) were employed. By increasing the height of the fall of the dropping mass, the maximum wavelength (lambda(max)), up to which the shear wave velocity profile can be predicted with the usage of the SASW measurements, was found to increase continuously. The height of fall of the dropping mass also seems to affect the admissible range of the wavelength for given combinations of X and S. Irrespective of different chosen combinations of S, X and H, a unique combined dispersion curve was generated in all the cases for a given pavement site as long as the threshold minimum value of the coherence function is greater than 0.90.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glaciers are natural reservoirs of fresh water in frozen state and sensitive indicators of climate change. Among all the mountainous glaciated regions, glaciers of Himalayas form one of the largest concentrations of ice outside the Polar Regions. Almost all the major rivers of northern India originate from these glaciers and sustain perennial flow. Therefore, in view of the importance and role of the glaciers in sustaining the life on the Earth, monitoring the health of glaciers is necessary. Glacier's health is monitored in two ways (i) by mapping the change in extent of glaciers (ii) by finding variation in the annual mass balance. This paper has been discussed the later approach for monitoring the health of glaciers of Warwan and Bhut basins. Mass balance of glaciers of these two basins was determined based on the extraction of snow line at the end of ablation season. A series of satellite images of AWiFS sensor were analysed for extraction of snowline on the glaciers for the period of 2005, 2006 and 2007. The snow line at the end of ablation season is used to compute accumulation area ratio (AAR = Accumulation area/Glacier area) for each glacier of basins. An approach based on relationship of AAR to specific mass balance (computed in field) for glaciers of Basapa basin was employed in the present study. Mean of specific mass balance of individual glacier for the year 2005, 2006 and 2007 of Warwan basin was found to be -ve 0.19 m, -ve 0.27 m and -ve 0.2 m respectively. It is 0.05 m, -ve 0.11 m and -ve 0.19 m for Bhut basin. The analysis suggests a loss of 4.3 and 0.83 kmA(3) of glacier in the monitoring period of 3 years for Warwan and Bhut basins respectively. The overall results suggest that the glaciers of Warwan basin and Bhut basins have suffered more loss of ice than gain in the monitoring period of 3 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MnO2 is electrochemically deposited on Au coated quartz crystal to study the electrochemical capacitance properties and to monitor the mass variations that accompany reversible adsorption/desorption of Na+, Mg2+ and La3+ ions during discharge/charge cycling. There is an increase in the values of specific capacitance of MnO2 with increase in charge of the cation in the electrolyte. Also, there is an increase in mass during discharge due to adsorption of cations from the electrolyte resulting from reduction of MnO2. Mass decreases during charging process due to desorption of cations. The magnitude of mass variation is approximately proportional to the atomic weight of the cationic element. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE The ratio of the measured abundance of 13C18O bonding CO2 to its stochastic abundance, prescribed by the delta 13C and delta 18O values from a carbonate mineral, is sensitive to its growth temperature. Recently, clumped-isotope thermometry, which uses this ratio, has been adopted as a new tool to elucidate paleotemperatures quantitatively. METHODS Clumped isotopes in CO2 were measured with a small-sector isotope ratio mass spectrometer. CO2 samples digested from several kinds of calcium carbonates by phosphoric acid at 25 degrees C were purified using both cryogenic and gas-chromatographic separations, and their isotopic composition (delta 13C, delta 18O, Delta 47, Delta 48 and Delta 49 values) were then determined using a dual-inlet Delta XP mass spectrometer. RESULTS The internal precisions of the single gas Delta 47 measurements were 0.005 and 0.02 parts per thousand (1 SE) for the optimum and the routine analytical conditions, respectively, which are comparable with those obtained using a MAT 253 mass spectrometer. The long-term variations in the Delta 47 values for the in-house working standard and the heated CO2 gases since 2007 were close to the routine, single gas uncertainty while showing seasonal-like periodicities with a decreasing trend. Unlike the MAT 253, the Delta XP did not show any significant relationship between the Delta 47 and delta 47 values. CONCLUSIONS The Delta XP gave results that were approximately as precise as those of the MAT 253 for clumped-isotope analysis. The temporal stability of the Delta XP seemed to be lower, although an advantage of the Delta XP was that no dependency of delta 47 on Delta 47 was found. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of a prescribed tangential velocity on the drag force on a circular cylinder in a spanwise uniform cross flow. Using a combination of theoretical and numerical techniques we make an attempt at determining the optimal tangential velocity profiles which will reduce the drag force acting on the cylindrical body while minimizing the net power consumption characterized through a non-dimensional power loss coefficient (C-PL). A striking conclusion of our analysis is that the tangential velocity associated with the potential flow, which completely suppresses the drag force, is not optimal for both small and large, but finite Reynolds number. When inertial effects are negligible (R e << 1), theoretical analysis based on two-dimensional Oseen equations gives us the optimal tangential velocity profile which leads to energetically efficient drag reduction. Furthermore, in the limit of zero Reynolds number (Re -> 0), minimum power loss is achieved for a tangential velocity profile corresponding to a shear-free perfect slip boundary. At finite Re, results from numerical simulations indicate that perfect slip is not optimum and a further reduction in drag can be achieved for reduced power consumption. A gradual increase in the strength of a tangential velocity which involves only the first reflectionally symmetric mode leads to a monotonic reduction in drag and eventual thrust production. Simulations reveal the existence of an optimal strength for which the power consumption attains a minima. At a Reynolds number of 100, minimum value of the power loss coefficient (C-PL = 0.37) is obtained when the maximum in tangential surface velocity is about one and a half times the free stream uniform velocity corresponding to a percentage drag reduction of approximately 77 %; C-PL = 0.42 and 0.50 for perfect slip and potential flow cases, respectively. Our results suggest that potential flow tangential velocity enables energetically efficient propulsion at all Reynolds numbers but optimal drag reduction only for Re -> infinity. The two-dimensional strategy of reducing drag while minimizing net power consumption is shown to be effective in three dimensions via numerical simulation of flow past an infinite circular cylinder at a Reynolds number of 300. Finally a strategy of reducing drag, suitable for practical implementation and amenable to experimental testing, through piecewise constant tangential velocities distributed along the cylinder periphery is proposed and analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environment-friendly management of fruit flies involving pheromones is useful in reducing the undesirable pest populations responsible for decreasing the yield and the crop quality. A nanogel has been prepared from a pheromone, methyl eugenol (ME) using a low-molecular mass gelator. This was very stable at open ambient conditions and slowed down the evaporation of pheromone significantly. This enabled its easy handling and transportation without refrigeration, and reduction in the frequency of pheromone recharging in the orchard. Notably the involvement of the nano-gelled pheromone brought about an effective management of Bactrocera dorsalis, a prevalent harmful pest for a number of fruits including guava. Thus a simple, practical and low cost green chemical approach is developed that has a significant potential for crop protection, long lasting residual activity, excellent efficacy and favorable safety profiles. This makes the present invention well-suited for pest management in a variety of crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type Ia supernovae, sparked off by exploding white dwarfs of mass close to the Chandrasekhar limit, play the key role in understanding the expansion rate of the Universe. However, recent observations of several peculiar type Ia supernovae argue for its progenitor mass to be significantly super-Chandrasekhar. We show that strongly magnetized white dwarfs not only can violate the Chandrasekhar mass limit significantly, but exhibit a different mass limit. We establish from a foundational level that the generic mass limit of white dwarfs is 2.58 solar mass. This explains the origin of overluminous peculiar type Ia supernovae. Our finding further argues for a possible second standard candle, which has many far reaching implications, including a possible reconsideration of the expansion history of the Universe. DOI: 10.1103/PhysRevLett.110.071102

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous zirconia ceramic monoliths have been extensively used in thermo-structural applications due to their inherent low thermal conductivity in combination with their adaptability to form complicated shapes through advanced ceramic processing techniques. However, extruded cellular honeycomb structures made from these materials have been less explored for thermal management applications. There exist large potential applications due to their unique configurations, resulting in better heat-management mechanisms. Some of the studies carried out on zirconia honeycombs are safeguarded through patents due to its technical importance, or the information is not in the public domain. In the present study, for the sake of comparison, honeycomb specimens with varying wall thicknesses and unit cell lengths maintaining almost same bulk density of around 90% theoretical and relative density of 0.34-0.37 were prepared and subjected to thermal conductivity evaluation along with the solid samples with relative density of 1.0 using monotonic heating regime methodology. In addition, the effect of channel shape was also evaluated using square and triangular channeled honeycombs with the same relative densities. The results obtained from these specimens were correlated with their configurations to bring out the advantages accrued by using the honeycomb with these configurations. It was observed that a significant decrease in thermal conductivity was achieved in honeycombs, which can be attributed to the behavior of various heat transfer mechanisms that are operative at high temperatures in combination with the considerable reduction in thermal mass and the consequent conduction through the solids.