407 resultados para high charge state
Resumo:
We consider a time division duplex multiple-input multiple-output (nt × nr MIMO). Using channel state information (CSI) at the transmitter, singular value decomposition (SVD) of the channel matrix is performed. This transforms the MIMO channel into parallel subchannels, but has a low overall diversity order. Hence, we propose X-Codes which achieve a higher diversity order by pairing the subchannels, prior to SVD preceding. In particular, each pair of information symbols is encoded by a fixed 2 × 2 real rotation matrix. X-Codes can be decoded using nr very low complexity two-dimensional real sphere decoders. Error probability analysis for X-Codes enables us to choose the optimal pairing and the optimal rotation angle for each pair. Finally, we show that our new scheme outperforms other low complexity precoding schemes.
Resumo:
Redox supercapacitors using polyaniline (PANI) coated. stainless-steel (SS) electrodes have been assembled and characterized. PANI has been deposited on SS substrate by a potentiodynamic method from an acidic electrolyte which contains aniline monomer. By employing stacks of electrodes, each with a geometrical area of 24 cm(2), in acidic perchlorate electrolyte, a capacitance value of about 450 F has been obtained over a long cycle-life. Characterization studies have been carried out by galvanostatic charge-discharge cycling of the capacitors singly, as well as in series and parallel configurations. Various electrical parameters have been evaluated. Use of the capacitors in parallel with a battery for pulse-power loads. and also working of a toy fan connected to the charged capacitors have been demonstrated. A specific capacitance value of about 1300 F g(-1) of PANI has been obtained at a discharge power of about 0.5 kW kg(-1). This value is several times higher than those reported in the literature for PANI and is, perhaps, the highest value known for a capacitor material. The inexpensive SS substrate and the high-capacitance PANI are favorable factors for commercial exploitation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Grain size has marked effects on charge-ordering and other properties of Nd(0.5)A(0.5)MnO(3) (A=Ca or Sr). Thus, the anti-ferromagnetic (AFM) transition in Nd0.5Ca0.5MnO3 is observed distinctly only in samples sintered at 1273 K or higher. The sample with a small grain size (sintered at 1173 K) shows evidence for greater ferromagnetic (FM) interaction at low temperatures, probably due to phase segregation. The FM transition as well as the charge-ordering transition in Nd0.5Sr0.5MnO3 becomes sharper in samples sintered at 1273 K or higher. The sample sintered at 1173 K does not show the AFM-CO transition around 150 K and is FM down to low temperatures; the apparent T-c-T-co gap decreases with the increase in the grain size. The samples sintered at lower temperatures (<1673 K) show evidence for greater segregation of the AFM and FM domains. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
An isothermal section of the phase diagram for the system Eu - Pd - O at 1223 K has been established by equilibration of samples representing 20 different compositions, and phase identification after quenching by optical and scanning electron microscopy, X-ray powder diffraction, and energy dispersive spectroscopy. Three ternary oxides, Eu4PdO7, Eu2PdO4, and Eu2Pd2O5, were identified. Liquid alloys and the intermetallic compounds EuPd2 and EuPd3 were found to be in equilibrium with EuO. The compound EuPd3 was also found to coexist separately with Eu3O4 and Eu2O3. The oxide phase in equilibrium with EuPd5 and Pd rich solid solution was Eu2O3. Based on the phase relations, four solid state cells were designed to measure the Gibbs energies of formation of the three ternary oxides in the temperature range from 925 to 1350 K. Although three cells are sufficient to obtain the properties of the three compounds, the fourth cell was deployed to crosscheck the data. An advanced version of the solid state cell incorporating a buffer electrode with yttria stabilised zirconia solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode was used for high temperature thermodynamic measurements. Equations for the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides Eu2O3 with C type structure and PdO have been established. Based on the thermodynamic information, isothermal chemical potential diagrams and isobaric phase diagrams for the system Eu - Pd - O have been developed.
Resumo:
Polyaniline (PANI) has been studied as an active material for electrochemical capacitors. Polymerization of aniline to PANI has been carried out potentiodynamically on a stainless steel (SS) substrate, instead of Pt-based substrates generally employed for this application. The PANI/SS electrodes have been evaluated by assembling symmetrical capacitors in NaClO(4) + HClO(4) mixed electrolyte and subjecting them to galvanostatic charge/discharge cycles between 0 and 0.75 V. The effect of substrate has been assessed by comparing the capacitance of PANI/SS and PANI/Pt electrodes. The capacitance of PANI/SS electrode is higher than that of PANI/Pt electrode by several times. The effect of sweep rate of potentiodynamic deposition of PANI/SS on capacitance has been investigated. At a power density of 0.5 kW kg(-1), a capacitance value of 815 F g(-1) of PANI is obtained for the deposition sweep rate of 200 mV s(-1). Increase in thickness of PANI on the SS substrate results in an increase in capacitance of PANI. This value of capacitance is the highest ever reported for any electrochemical capacitor material. Thus, in addition to a favorable economic aspect involved in using SS instead of Pt or Pt-based substrate, the advantage of higher capacitance of PANI has also been achieved. (C) 2002 The Electrochemical Society.
Resumo:
A series of high-martensite dual-phase (HMDP) steels exhibiting a 0.3 to 0.8 volume fraction of martensite (V m ), produced by intermediate quenching (IQ) of a vanadium and boron-containing microalloyed steel, have been studied for toughness and fatigue behavior to supplement the contents of a recent report by the present authors on the unusual tensile behavior of these steels. The studies included assessment of the quasi-static and dynamic fracture toughness and fatigue-crack growth (FCG) behavior of the developed steels. The experimental results show that the quasi-static fracturetoughness (K ICV ) increases with increasing V m in the range between V m =0.3 and 0.6 and then decreases, whereas the dynamic fracture-toughness parameters (K ID , K D , and J ID ) exhibit a significant increase in their magnitudes for steels containing 0.45 to 0.60 V m before achieving a saturation plateau. Both the quasi-static and dynamic fracture-toughness values exhibit the best range of toughnesses for specimens containing approximately equal amounts of precipitate-free ferrite and martensite in a refined microstructural state. The magnitudes of the fatigue threshold in HMDP steels, for V m between 0.55 and 0.60, appear to be superior to those of structural steels of a similar strength level. The Paris-law exponents (m) for the developed HMDP steels increase with increasing V m , with an attendant decrease in the pre-exponential factor (C).
Resumo:
This paper reports ab intio, DFT and transition state theory (TST) calculations on HF, HCI and CIF elimination reactions from CH2Cl-CH2F molecule. Both the ground state and the transition state for HX elimination reactions have been optimized at HF, MP2 and DFT calculations with 6-31G*, 6-31G** and 6-311++G** basis sets. In addition, CCSD(T) single point calculations were carried out with MP2/6-311++G** optimized geometry for more accurate determination of the energies of the minima and transition state, compared to the other methods employed here. Classical barriers are converted to Arrhenius activation energy by TST calculations for comparisons with experimental results. The pre-exponential factors, A, calculated at all levels of theory are significantly larger than the experimental values. For activation energy, E-a DFT gives good results for HF elimination, within 4-8 W mol(-1) from experimental values. None of the methods employed, including CCSD(T), give comparable results for HCI elimination reactions. However, rate constants calculated by CCSD(T) method are in very good agreement with experiment for HCI elimination and they are in reasonable agreement for HF elimination reactions. Due to the strong correlation between A and E., the rate constants could be fit to a lower A and E-a (as given by experimental fitting, corresponding to a tight TS) or to larger A and E-a (as given by high level ab initio calculations, corresponding to a loose TS). The barrier for CIF elimination is determined to be 607 U mol(-1) at HF level and it is unlikely to be important for CH2FCH2Cl. Results for other CH2X-CH2Y (X,Y = F/Cl) are included for comparison.
Resumo:
The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.
Resumo:
Fracture toughness and fracture mechanisms in Al2O3/Al composites are described. The unique flexibility offered by pressureless infiltration of molten Al alloys into porous alumina preforms was utilized to investigate the effect of microstructural scale and matrix properties on the fracture toughness and the shape of the crack resistance curves (R-curves). The results indicate that the observed increment in toughness is due to crack bridging by intact matrix ligaments behind the crack tip. The deformation behavior of the matrix, which is shown to be dependent on the microstructural constraints, is the key parameter that influences both the steady-state toughness and the shape of the R-curves. Previously proposed models based on crack bridging by intact ductile particles in a ceramic matrix have been modified by the inclusion of an experimentally determined plastic constraint factor (P) that determines the deformation of the ductile phase and are shown to be adequate in predicting the toughness increment in the composites. Micromechanical models to predict the crack tip profile and the bridge lengths (L) correlate well with the observed behavior and indicate that the composites can be classified as (i) short-range toughened and (ii) long-range toughened on the basis of their microstructural characteristics.
Resumo:
Recent results and data suggest that high magnetic fields in neutron stars (NS) strongly affect the characteristics (radius, mass) of the star. Such stars are even separated into a class known as magnetars, for which the surface magnetic field is greater than 10(14) G. In this work we discuss the effect of such a high magnetic field on the phase transition of a NS to a quark star (QS). We study the effect of magnetic field on the transition from NS to QS including the magnetic-field effect in the equation of state (EoS). The inclusion of the magnetic field increases the range of baryon number densities for which the flow velocities of the matter in the respective phase are finite. The magnetic field helps in initiation of the conversion process. The velocity of the conversion front, however, decreases due to the presence of the magnetic field, as the presence of the magnetic field reduces the effective pressure (P). The magnetic field of the star is decreased by the conversion process, and the resultant QS has lower magnetic field than the initial NS.
Resumo:
The purpose of this paper is to present exergy charts for carbon dioxide (CO2) based on the new fundamental equation of state and the results of a thermodynamic analysis of conventional and trans-critical vapour compression refrigeration cycles using the data thereof. The calculation scheme is anchored on the Mathematica platform. There exist upper and lower bounds for the high cycle pressure for a given set of evaporating and pre-throttling temperatures. The maximum possible exergetic efficiency for each case was determined. Empirical correlations for exergetic efficiency and COP, valid in the range of temperatures studied here, are obtained. The exergy losses have been quantified. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The role of B2O3 addition on the long phosphorescence of SrAl2O4:Eu2+, Dy3+ has been investigated. B2O3 is just not an inert high temperature solvent (flux) to accelerate grain growth, according to SEM results. B2O3 has a substitutional effect, even at low concentrations. by way of incorporation of BO4 in the corner-shared AlO4 framework of the distorted 'stuffed' tridymite structure of SrAl2O4. which is discernible from the IR and solid-state MAS NMR spectral data. With increasing concentrations, B2O3 reacts with SrAl2O4 to form Sr4Al4O25 together with Sr-borate (SrB2O4) as the glassy phase, as evidenced by XRD and SEM studies. At high B2O3 contents, Sr4Al14O25 converts to SrAl2B2O7 (cubic and hexagonal), SrAl12O19 and Sr-borate (SrB4O7) glass. Sr4Al14O25:Eu2+, Dy3+ has also been independently synthesized to realize the blue emitting (lambda(em)approximate to490 nm) phosphor. The afterglow decay as well as thermoluminescence studies reveal that Sr4Al14O25:Eu, Dy exhibits equally long phosphorescence as that of SrAl2O4:Eu2+, Dy3+. In both cases, long phosphorescence is noticed only when BO4 is present along with Dy3+ and Eu2+. Here Dy3+ because of its higher charge density than Eu2+ prefers to occupy the Sr sites in the neighbourhood of BO4, as the effective charge on borate is more negative than that of AlO4. Thus. Dy3+ forms a substitutional defect complex with borate and acts as an acceptor-type defect center. These defects Eu2+ ions and the subsequent thermal release of hole at room temperature followed by the trap the hole generated by the excitation of recombination with electron resulting in the long persistent phosphorescence. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A series of novel, microporous polymer networks (MPNs) have been generated in a simple, acid catalysed Friedel-Crafts-type self-condensation of A(2)B(2)- and A(2)B(4)-type fluorenone monomers. Two A2B4-type monomers with 2,7-bis(N, N-diphenylamino) A or 2,7-bis [4-(N, N-diphenylamino) phenyl] D substitution of the fluorenone cores lead to MPNs with high S(BET) surface areas of up to 1400 m(2) g(-1). Two MPNs made of binary monomer mixtures showed the highest Brunauer-Emmett-Teller (BET) surface areas S(BET) of our series (SBET of up to 1800 m(2) g(-1)) after washing the powdery samples with supercritical carbon dioxide. Total pore volumes of up to 1.6 cm(3) g(-1) have been detected. It is observed that the substitution pattern of the monomers is strongly influencing the resulting physicochemical properties of the microporous polymer networks (MPNs).
Resumo:
Electrical resistivity studies of the charge transfer complex benzidine—TCNQ and its inclusion compound, have been carried out up to pressures 8 GPa. Two types of behaviour were observed in these complexes under high pressure and this difference is interpreted and discussed.
Resumo:
The quality of tap water from water supplies from 14 districts of Kerala state, India was studied. Parameters like pH, water temperature, total dissolved solids, salinity, nitrates, chloride, hardness, magnesium, calcium, sodium, potassium, fluoride, sulphate, phosphates, and coliform bacteria were enumerated. The results showed that all water samples were contaminated by coliform bacteria. About 20% of the tap water samples from Alappuzha and 15% samples from Palakkad district are above desirable limits prescribed by Bureau of Indian Standards. The contamination of the source water (due to lack of community hygiene) and insufficient treatment are the major cause for the coliform contamination in the state. Water samples from Alappuzha and Palakkad have high ionic and fluoride content which could be attributed to the geology of the region. Water supplied for drinking in rural areas are relatively free of any contamination than the water supplied in urban area by municipalities, which may be attributed higher chances of contamination in urban area due to mismanagement of solid and liquid wastes. The study highlights the need for regular bacteriological enumeration along with water quality in addition to setting up decentralised region specific improved treatment system.