317 resultados para functional thin films
Resumo:
TiO2 thin films with 0.2 wt%, 0.4 wt%, 0.6 wt%, and 0.8 wt% Fe were prepared on glass and silicon substrates using sol-gel spin coating technique. The optical cut-off points are increasingly red-shifted and the absorption edge is shifted over the higher wavelength region with Fe content increasing. As Fe content increases, the optical band gap decreases from 3.03 to 2.48 eV whereas the tail width increases from 0.26 to 1.43 eV. The X-ray diffraction (XRD) patterns for doped films at 0.2 wt% and 0.8 wt% Fe reveal no characteristic peaks, indicating that the film is amorphous whereas undoped TiO2 exhibits (101) orientation with anatase phase. Thin films of higher Fe content exhibit a homogeneous, uniform, and nano-structured highly porous shell morphology.
Resumo:
The complex perovskite oxide SrRuO3 shows intriguing transport properties at low temperatures due to the interplay of spin, charge, and orbital degrees of freedom. One of the open questions in this system is regarding the origin and nature of the low-temperature glassy state. In this paper we report on measurements of higher-order statistics of resistance fluctuations performed in epitaxial thin films of SrRuO3 to probe this issue. We observe large low-frequency non-Gaussian resistance fluctuations over a certain temperature range. Our observations are compatible with that of a spin-glass system with properties described by hierarchical dynamics rather than with that of a simple ferromagnet with a large coercivity.
Resumo:
Doubly (Sn + F) doped zinc oxide (ZnO:Sn:F) thin films were deposited onto glass substrates using a simplified spray pyrolysis technique. The deposited films were annealed at 400 degrees C under two different ambiences (air and vacuum) for 2 h. The photocatalytic activity of these films was assessed through photocatalytic decolorization kinetics of Methylene Blue (MB) dye and the decolorization efficiency of the annealed films was compared with that of their as-deposited counterpart. The photocatalytic studies reveal that the ZnO:Sn:F films annealed under vacuum environment exhibits better photocatalytic efficiency when compared with both air annealed and as-deposited films. The SEM and TEM images depict that the surface of each of the films has an overlayer comprising of nanobars formed on a bottom layer, having spherical grains. The studies show that the diameter of the nanobars plays crucial role in enhancing the photocatalytic activity of the ZnO:Sn:F films. The structural, optical and electrical studies substantiate the discussions on the photocatalytic ability of the deposited films. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Undoped and Sn-doped WO3 thin films were grown on cleaned glass substrates by chemical spray pyrolysis, using ammonium tungstate (NH4)(2)WO4 as the host precursor and tin chloride (SnCl4 center dot 5H(2)O) as the source of dopant. The XRD spectra confirm the monoclinic structure with a sharp narrow peak along (200) direction along with other peaks of low relative intensities for all the samples. On Sn doping, the films exhibit reduced crystallinity relative to the undoped film. The standard deviation for relative peak intensity with dopant concentration shows enhancement in heterogeneous nucleation growth. As evident from SEM images, on Sn doping, appearance of island-like structure (i.e., cluster of primary crystallites at few places) takes place. The transmittance has been found to decrease in all the Sn-doped films. The optical band gap has been calculated for both direct and indirect transitions. On Sn doping, the direct band gap shows a red shift and becomes 2.89 eV at 2 at.% doping. Two distinct peaks, one blue emission at 408 nm and other green emission at 533 nm, have been found in the PL spectra. Electrical conductivity has been found to increase with Sn doping.
Resumo:
Recently, it was found that the ferromagnetic SrRuO3 when combined with another ferromagnet in thin film form gives rise to exchange bias (EB) effect. However, we observed EB in single, strained, SrRuO3 thin films grown on diamagnetic LaAlO3 (100) substrates. It displays the training effect, which essentially confirms EB. The temperature dependence of the EB reveals the blocking temperature to be around similar to 75 K. The strength of the exchange bias decreases with the increase in thickness of the film. We observe tensile strain in the out of plane direction. Further, the presence of in-plane compressive strain is observed through asymmetric reciprocal space mapping. Finally, we find a direct link between strain and EB. The evolution of strain with thickness matches well with the nature of scaled EB. It has been shown earlier by first principle calculations that this strain can induce EB in thin films. (C) 2014 AIP Publishing LLC.
Resumo:
Bi1-xCaxMnO3 (BCMO) thin films with x = 0, 0.1, 0.2, 0.3 and 0.4 are successfully deposited on the n-type Si (100) substrate at two different temperatures of 400 degrees C and 800 degrees C using RF magnetron sputtering. The stoichiometry of the films and oxidation state of the elements have been described by X-ray photoelectron spectroscopy analysis. Dielectric measurement depicts the insulating property of BCMO films. Magnetic and ferroelectric studies confirm the significant enhancement in spin orientation as well as electric polarization at room temperature due to incorporation of Ca2+ ions into BiMnO3 films. The BCMO (x = 0.2) film grown at 400 degrees C shows better magnetization (M-sat) and polarization (P-s) with the measured values of 869 emu / cc and 6.6 mu(C)/cm(2) respectively than the values of the other prepared films. Thus the realization of room temperature ferromagnetic and ferroelectric ordering in Ca2+ ions substituted BMO films makes potentially interesting for spintronic device applications. (C) 2014 Author(s).
Resumo:
A layer-by-layer (LbL) approach has been employed for the fabrication of multilayer thin films and microcapsules having nanofibrous morphology using nanocrystalline cellulose (NCC) as one of the components of the assembly. The applicability of these nanoassemblies as drug delivery carriers has been explored by the loading of an anticancer drug, doxorubicin hydrochloride, and a water-insoluble drug, curcumin. Doxorubicin hydrochloride, having a good water solubility, is postloaded in the assembly. In the case of curcumin, which is very hydrophobic and has limited solubility in water, a stable dispersion is prepared via noncovalent interaction with NCC prior to incorporation in the LbL assembly. The interaction of various other lipophilic drugs with NCC was analyzed theoretically by molecular docking in consideration of NCC as a general carrier for hydrophobic drugs.
Resumo:
In epitaxially grown alloy thin films, spinodal decomposition may be promoted or suppressed depending on the sign of the epitaxial strain. We study this asymmetry by extending Cahn's linear theory of spinodal decomposition to systems with a composition dependent lattice parameter and modulus (represented by Vegard's law coefficients, GRAPHICS] and y, respectively), and an imposed (epitaxial) strain (e). We show analytically (and confirm using simulations) that the asymmetric effect of epitaxial strains arises only in elastically inhomogeneous systems. Specifically, we find good agreement between analytical and simulation results for the wave number GRAPHICS] of the fastest growing composition fluctuation. The asymmetric effect due to epitaxial strain also extends to microstructure formation: our simulations show islands of elastically softer (harder) phase with (without) a favourable imposed strain. We discuss the implications of these results to GeSi thin films on Si and Ge substrates, as well as InGaAs films on GaAs substrates.
Resumo:
Amorphous W-S-N in the form of thin films has been identified experimentally as an ultra-low friction material, enabling easy sliding by the formation of a WS2 tribofilm. However, the atomic-level structure and bonding arrangements in amorphous W-S-N, which give such optimum conditions for WS2 formation and ultra-low friction, are not known. In this study, amorphous thin films with up to 37 at.% N are deposited, and experimental as well as state-of-the-art ab initio techniques are employed to reveal the complex structure of W-S-N at the atomic level. Excellent agreement between experimental and calculated coordination numbers and bond distances is demonstrated. Furthermore, the simulated structures are found to contain N bonded in molecular form, i.e. N-2, which is experimentally confirmed by near edge X-ray absorption fine structure and X-ray photoelectron spectroscopy analysis. Such N-2 units are located in cages in the material, where they are coordinated mainly by S atoms. Thus this ultra-low friction material is shown to be a complex amorphous network of W, S and N atoms, with easy access to W and S for continuous formation of WS2 in the contact region, and with the possibility of swift removal of excess nitrogen present as N-2 molecules. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
In the present work, Li2-x MnO3-y (LMO) thin films have been deposited by radio frequency (RF) reactive magnetron sputtering using acid-treated Li2MnO3 powder target. Systematic investigations have been carried out to study the effect of RF power on the physicochemical properties of LMO thin films deposited on platinized silicon substrates. X-ray diffraction, electron microscopy, surface chemical analysis and electrochemical studies were carried out for the LMO films after post deposition annealing treatment at 500 A degrees C for 1 h in air ambience. Galvanostatic charge discharge studies carried out using the LMO thin film electrodes, delivered a highest discharge capacity of 139 mu Ah mu m(-1) cm(-2) in the potential window 2.0-3.5 V vs. Li/Li+ at 100 W RF power and lowest discharge capacity of 80 mu Ah mu m(-1) cm(-2) at 75 W RF power. Thereafter, the physicochemical properties of LMO films deposited using optimized RF power 100 W on stainless steel substrates has been studied in the thickness range of 70 to 300 nm as a case study. From the galvanostatic charge discharge experiments, a stable discharge capacity of 68 mu Ah mu m(-1) cm(-2) was achieved in the potential window 2.0-4.2 V vs. Li/Li+ tested up to 30 cycles. As the thickness increased, the specific discharge capacity started reducing with higher magnitude of capacity fading.
Controlling phase separation in La5/8-yPryCa3/8MnO3 (y=0.45) epitaxial thin films by strain disorder
Resumo:
Present study reveals that the length-scale of phase separation in La5/8-yPryCa3/8MnO3 thin films can be controlled by strain disorder invoked during the growth and relaxation process of film. Strain disorder provides an additional degree of freedom to tune colossal magnetoresistance. Magneto-transport measurements following cooling and heating in unequal fields protocol demonstrate that coherent strain stabilizes antiferromagnetic insulating phase, while strain disorder favors ferromagnetic metallic phase. Compared to bulk, antiferromagnetic-insulating phase freezes at lower temperatures in strain disordered films. Raman spectroscopy confirms the coexistence of charge-ordered-insulating and ferromagnetic-metallic phases which are structurally dissimilar and possess P2(1)/m and R-3C like symmetries, respectively. (C) 2015 AIP Publishing LLC.
Resumo:
We demonstrate the growth of high quality single phase films of VO2(A, B, and M) on SrTiO3 substrate by controlling the vanadium arrival rate (laser frequency) and oxidation of the V atoms. A phase diagram has been developed (oxygen pressure versus laser frequency) for various phases of VO2 and their electronic properties are investigated. VO2(A) phase is insulating VO2(B) phase is semi-metallic, and VO2(M) phase exhibits a metal-insulator transition, corroborated by photoelectron spectroscopic studies. The ability to control the growth of various polymorphs opens up the possibility for novel (hetero) structures promising new device functionalities. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
The photo-induced effects of Ge12Sb25S63 films illuminated with 532 nm laser light are investigated from transmission spectra measured by FTIR spectroscopy. The material exhibits photo-bleaching (PB) when exposed to band gap light for a prolonged time in a vacuum. The PB is ascribed to structural changes inside the film as well as surface photooxidation. The amorphous nature of thin films was detected by x-ray diffraction. The chemical composition of the deposited thin films was examined by energy dispersive x-ray analysis (EDAX). The refractive indices of the films were obtained from the transmission spectra based on an inverse synthesis method and the optical band gaps were derived from optical absorption spectra using the Tauc plot. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. It was found that the mechanism of the optical absorption follows the rule of the allowed non-direct transition. Raman and x-ray photoelectron spectra (XPS) were measured and decomposed into several peaks that correspond to the different structural units which support the optical changes.
Resumo:
Downscaling of yttria stabilized zirconia (YSZ) based electrochemical devices and gate oxide layers requires successful pattern transfer on YSZ thin films. Among a number of techniques available to transfer patterns to a material, reactive ion etching has the capability to offer high resolution, easily controllable, tunable anisotropic/isotropic pattern transfer for batch processing. This work reports inductively coupled reactive ion etching studies on sputtered YSZ thin films in fluorine and chlorine based plasmas and their etch chemistry analyses using x-ray photoelectron spectroscopy. Etching in SF6 plasma gives an etch rate of 7 nm/min chiefly through physical etching process. For same process parameters, in Cl-2 and BCl3 plasmas, YSZ etch rate is 17 nm/min and 45 nm/min, respectively. Increased etch rate in BCl3 plasma is attributed to its oxygen scavenging property synergetic with other chemical and physical etch pathways. BCl3 etched YSZ films show residue-free and smooth surface. The surface atomic concentration ratio of Zr/Y in BCl3 etched films is closer to as-annealed YSZ thin films. On the other hand, Cl-2 etched films show surface yttrium enrichment. Selectivity ratio of YSZ over silicon (Si), silicon dioxide (SiO2) and silicon nitride (Si3N4) are 1:2.7, 1:1, and 1:0.75, respectively, in BCl3 plasma. YSZ etch rate increases to 53 nm/min when nonoxygen supplying carrier wafer like Si3N4 is used. (C) 2015 American Vacuum Society.
Resumo:
This paper reports the structure, microstructure and magnetic properties of Fe-Ga thin films deposited using DC magnetron sputtering technique on Si(100) substrate kept at different temperatures. Structural studies employing X-ray diffraction and TEM revealed the presence of only disordered A2 phase in the film. Columnar growth of nanocrystalline grains from the substrate was observed in the film deposited at room temperature. With increase in substrate temperature the grain size as well as surface roughness was found to increase. The magnetization of the films deposited at higher substrate temperatures were Found to saturate at lower magnetic held as compared to the room temperature deposited Film. Coercivity was found to decrease with increasing substrate temperature upto a minimum value of similar to 2 Oe for the film deposited at 450 degrees C and with further increase in substrate temperature it was found to increase. A maximum magnetostriction of 200 mu-strains was also observed for the film deposited at 450 degrees C. (C) 2015 Elsevier B.V. All rights reserved