273 resultados para based on (NM2) – (SOR1NM2)
Resumo:
We discuss the potential application of high dc voltage sensing using thin-film transistors (TFTs) on flexible substrates. High voltage sensing has potential applications for power transmission instrumentation. For this, we consider a gate metal-substrate-semiconductor architecture for TFTs. In this architecture, the flexible substrate not only provides mechanical support but also plays the role of the gate dielectric of the TFT. Hence, the thickness of the substrate needs to be optimized for maximizing transconductance, minimizing mechanical stress, and minimizing gate leakage currents. We discuss this optimization, and develop n-type and p-type organic TFTs using polyvinyldene fluoride as the substrate-gate insulator. Circuits are also realized to achieve level shifting, amplification, and high drain voltage operation.
Resumo:
The tribe Iphigenieae (Colchicaceace, Liliales) includes two genera, viz. Camptorrhiza and Iphigenia, which are distributed in Africa, India, and Australasia. Iphigenia is represented by 12 species, of which six occur in India while Camptorrhiza comprises one species each in Africa (C. strumosa) and India (C. indica). The genus Camptorrhiza possesses a knee-shaped tuber attached to the corms, filaments with a thick bulge in the middle and styles with single stigma. Iphigenia on the other hand lacks knee-shaped tuber, bears linear filaments and has styles with three stigmas. Camptorrhiza indica possesses ovoid corms, linear filaments and styles with a single stigma. These characters are intermediate between Iphigenia and Camptorrhiza and hence we studied the cytogenetics and phylogenetic placement of this species to ascertain its generic identity. Somatic chromosome count (2n = 22) and karyotypic features of C. indica are very similar to that of Iphigenia species. Molecular phylogenetic studies based on atpB-rbcL, rps16, trnL, and trnL-F regions showed that C. indica is nested within a lineage of Indian Iphigenia species. Thus, C. indica was reduced to a species of Iphigenia, i.e., I. ratnagirica. Camptorrhiza is now a monotypic genus restricted only to southern Africa. A key to the Indian Iphigenia species is provided. In addition, a new combination Wurmbea novae-zelandiae is proposed for Iphigenia novae-zelandiae.
Resumo:
The design and synthesis is reported of 7-(9H-carbazol-9-yl)-4-methylcoumarin (Cz-Cm), comprising a carbazole donor moiety and a 4-methylcoumarin acceptor unit, for use in a blue organic light-emitting diode. A detailed solid state, theoretical and spectroscopic study was performed to understand the structure-property relationships. The material exhibits deep-blue emission and high photoluminescence quantum yield both in solution and in a doped matrix. A deep-blue electroluminescence emission at 430nm, a maximum brightness of 292cdm(-2) and an external quantum efficiency of 0.4% was achieved with a device configured as follows: ITO/NPD (30nm)/TCTA (20nm)/CzSi(10nm)/10wt% Cz-Cm:DPEPO (10nm)/TPBI (30nm)/LiF (1nm)/Al ITO=indium tin oxide, NPD=N,N-di(1-naphthyl)-N,N-diphenyl-(1,1-biphenyl)-4,4-diamine, TCTA=tris(4-carbazoyl-9-ylphenyl)amine, CzSi=9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole, DPEPO=bis2-(diphenylphosphino)phenyl]ether oxide, TPBI=1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene].