450 resultados para Woodbranch Energy Plaza (Houston, Tex.)
Resumo:
Miniaturization of devices and the ensuing decrease in the threshold voltage has led to a substantial increase in the leakage component of the total processor energy consumption. Relatively simpler issue logic and the presence of a large number of function units in the VLIW and the clustered VLIW architectures attribute a large fraction of this leakage energy consumption in the functional units. However, functional units are not fully utilized in the VLIW architectures because of the inherent variations in the ILP of the programs. This underutilization is even more pronounced in the context of clustered VLIW architectures because of the contentions for the limited number of slow intercluster communication channels which lead to many short idle cycles.In the past, some architectural schemes have been proposed to obtain leakage energy bene .ts by aggressively exploiting the idleness of functional units. However, presence of many short idle cycles cause frequent transitions from the active mode to the sleep mode and vice-versa and adversely a ffects the energy benefits of a purely hardware based scheme. In this paper, we propose and evaluate a compiler instruction scheduling algorithm that assist such a hardware based scheme in the context of VLIW and clustered VLIW architectures. The proposed scheme exploits the scheduling slacks of instructions to orchestrate the functional unit mapping with the objective of reducing the number of transitions in functional units thereby keeping them off for a longer duration. The proposed compiler-assisted scheme obtains a further 12% reduction of energy consumption of functional units with negligible performance degradation over a hardware-only scheme for a VLIW architecture. The benefits are 15% and 17% in the context of a 2-clustered and a 4-clustered VLIW architecture respectively. Our test bed uses the Trimaran compiler infrastructure.
Resumo:
Functionalized multiwalled carbon nanotubes (CNTs) are coated with a 4-5 nm thin layer of V(2)O(5) by controlled hydrolysis of vanadium alkoxide. The resulting V(2)O(5)/CNT composite has been investigated for electrochemical activity with lithium ion, and the capacity value shows both faradaic and capacitive (nonfaradaic) contributions. At high rate (1 C), the capacitive behavior dominates the intercalation as 2/3 of the overall capacity value out of 2700 C/g is capacitive, while the remaining is due to Li-ion intercalation. These numbers are in agreement with the Trasatti plots and are corroborated by X-ray photoelectron spectroscopy (XPS) studies on the V(2)O(5)/CNTs electrode, which show 85% of vanadium in the +4 oxidation state after the discharge at 1 C rate. The cumulative high-capacity value is attributed to the unique property of the nano V(2)O(5)/CNTs composite, which provides a short diffusion path for Lit-ions and an easy access to vanadium redox centers besides the high conductivity of CNTs. The composite architecture exhibits both high power density and high energy density, stressing the benefits of using carbon substrates to design high performance supercapacitor electrodes.
Resumo:
The paper explores the biomass based power generation potential of Africa. Access to electricity in sub-Saharan Africa (SSA) is about 26% and falls to less than 1% in the rural areas. On the basis of the agricultural and forest produce of this region, the residues generated after processing are estimated for all the countries. The paper also addresses the use of gasification technology - an efficient thermo-chemical process for distributed power generation - either to replace fossil fuel in an existing diesel engine based power generation system or to generate electricity using a gas engine. This approach enables the implementation of electrification programs in the rural sector and gives access to grid quality power. This study estimates power generation potential at about 5000 MW and 10,000 MW by using 30% of residues generated during agro processing and 10% of forest residues from the wood processing industry, respectively. A power generation potential of 15000 MW could generate 100 terawatt-hours (TWh), about 15% of current generation in SSA. The paper also summarizes some of the experience in using the biomass gasification technology for power generation in Africa and India. The paper also highlights the techno economics and key barriers to promotion of biomass energy in sub-Saharan Africa. (C) 2011 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
Single chain fragment variables (ScFvs) have been extensively employed in studying the protein-protein interactions. ScFvs derived from phage display libraries have an additional advantage of being generated against a native antigen, circumventing loss of information on conformational epitopes. In the present study, an attempt has been made to elucidate human chorionic gonadotropin (hCG)-luteinizing hormone (LH) receptor interactions by using a neutral and two inhibitory ScFvs against hCG. The objective was to dock a computationally derived model of these ScFvs onto the crystal structure of hCG and understand the differential roles of the mapped epitopes in hCG-LH receptor interactions. An anti-hCG ScFv, whose epitope was mapped previously using biochemical tools, served as the positive control for assessing the quality of docking analysis. To evaluate the role of specific side chains at the hCG-ScFv interface, binding free energy as well as residue interaction energies of complexes in solution were calculated using molecular mechanics Poisson-Boltzmann/surface area method after performing the molecular dynamic simulations on the selected hCG-ScFv models and validated using biochemical and SPR analysis. The robustness of these calculations was demonstrated by comparing the theoretically determined binding energies with the experimentally obtained kinetic parameters for hCG-ScFv complexes. Superimposition of hCG-ScFv model onto a model of hCG complexed with the 51-266 residues of LH receptor revealed importance of the residues previously thought to be unimportant for hormone binding and response. This analysis provides an alternate tool for understanding the structure-function analysis of ligand-receptor interactions. Proteins 2011;79:3108-3122. (C) 2011 Wiley-Liss, Inc.
Resumo:
We describe here a minimal theory of tight-binding electrons moving on the square planar Cu lattice of the hole-doped cuprates and mixed quantum mechanically with their own Cooper pairs. The superconductivity occurring at the transition temperature T(c) is the long-range, d-wave symmetry phase coherence of these Cooper pairs. Fluctuations, necessarily associated with incipient long-range superconducting order, have a generic large-distance behavior near T(c). We calculate the spectral density of electrons coupled to such Cooper-pair fluctuations and show that features observed in angle resolved photoemission spectroscopy (ARPES) experiments on different cuprates above T(c) as a function of doping and temperature emerge naturally in this description. These include ``Fermi arcs'' with temperature-dependent length and an antinodal pseudogap, which fills up linearly as the temperature increases toward the pseudogap temperature. Our results agree quantitatively with experiment. Below T(c), the effects of nonzero superfluid density and thermal fluctuations are calculated and compared successfully with some recent ARPES experiments, especially the observed bending or deviation of the superconducting gap from the canonical d-wave form.
Resumo:
The vapor pressure of pure liquid indium, and the sum of pressures of (In) and (In2O) species over the condensed phase mixture {In} +
Resumo:
The standard Gibbs free energy of formation of magnesium and cadmiumchromites have been determined by potentiometric measurements on reversiblesolid-state electrochemical cells [dformula (Au-5%Cd, , Au-5%Cd; Pt, + , CaO-ZrO[sub 2], + ,Pt; CdO, , CdCr[sub 2]O[sub 4] + Cr[sub 2]O[sub 3])] in the temperature range 500°–730°C, and [dformula Pt, Cr + Cr[sub 2]O[sub 3]/Y[sub 2]O[sub 3]-ThO[sub 2]/Cr + MgCr[sub 2]O[sub 4] + MgO, Pt] in the temperature range 800°–1200°C. The temperature dependence of the freeenergies of formation of the ternary compounds can be represented by theequations [dformula CdO(r.s.) + Cr[sub 2]O[sub 3](cor) --> CdCr[sub 2]O[sub 4](sp)] [dformula Delta G[sup 0] = - 42,260 + 7.53T ([plus-minus]400) J] and [dformula MgO(r.s.) + Cr[sub 2]O[sub 3](cor) --> MgCr[sub 2]O[sub 4](sp)] [dformula Delta G[sup 0] = - 45,200 + 5.36T ([plus-minus]400) J] The entropies of formation of these spinels are discussed in terms of cationdisorder and extent of reduction of Cr3+ ions to Cr2+ ions. Thermodynamicdata on the chromates of cadmium and magnesium are derived by combiningthe results obtained in this study with information available in the literatureon high temperature, high pressure phase equilibria in the systems CdO-Cr2O3-O2 and MgO-Cr2O3-O2.
Resumo:
he thermodynamic properties of the spinel Mg2SnO4 have been determined by emf measurements on the solid oxide galvanic cell,View the MathML source in the temperature range 600 to 1000°C. The Gibbs' free energy of formation of Mg2SnO4 from the component oxides can be expressed as View the MathML source,View the MathML source These values are in good agreement with the information obtained by Jackson et al. [Earth Planet. Sci. Lett.24, 203 (1974)] on the high pressure decomposition of magnesium stannate into component oxides at different temperatures. The thermodynamic data suggest that the spinel phase is entropy stabilized, and would be unstable below 207 (±25)°C at atmospheric pressure. Based on the information obtained in this study and trends in the stability of aluminate and chromite spinels, it can be deduced that the stannates of nickel and copper(II) are unstable.