623 resultados para Silver Films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La-graded heterostructure films were prepared by sol-gel technique on platinum substrates and electrical properties of these films were compared with those of conventional thin films of similar compositions. X-ray diffraction results indicate the pure perovskite polycrystalline structure of these films. Atomic Force Microscopy analysis revealed a finer grain size and relatively lower surface roughness. Relatively higher values of Pm and Pr (69 and 38 ?C cm?2, respectively) and excellent dielectric properties with lower loss (K=1900, tan ?=0.035 at 100 kHz) were observed for La-graded heterostructure films. Also lower leakage current density (not, vert, similar2.5 nA cm?2) and a higher onset field (not, vert, similar50 kV cm?1) of space charge conduction indicated higher breakdown strength and good leakage current characteristics. The ac electric field dependence of the permittivity at sub-switching fields was analyzed in the framework of the Rayleigh dynamics of domain walls. The estimated irreversible domain wall displacement contribution to the total dielectric permittivity was 17 and 9% for conventional 15 at.% La doped PbTiO3 and La-graded heterostructure films, respectively. The improved dielectric and polarization behavior of La-graded heterostructure films may be attributed to homogenous dopant distribution compared to the conventional 15 at.% La doped PbTiO3 films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have prepared Ag-nanorods using biscationic gemini surfactant micelles as the media by a seed-mediated wet synthesis method. Towards this end, we first synthesized Ag-nanoseeds of diameter similar to 7 nm stabilized by trisodium citrate (as the capping agent). Then these Ag-nanoseeds were used to synthesize Ag-nanorods of different aspect ratios. With decreasing Ag-nanoseed concentration, the aspect ratios of the Ag-nanorods stabilized by these gemini surfactants increased gradually. Various Ag-nanoseeds and Ag-nanospecies were characterized using UV-Vis spectroscopy (to know the surface plasmon bands), transmission electron microscopy (to find out their particle sizes and distribution), energy-dispersive X-ray spectroscopy and X-ray diffraction. When we used micelles derived from gemini surfactants of shorter spacer-(CH(2))(n)-(n = 2 or 4) to stabilize the Ag-nanorods, the lambda(max) of the longitudinal band shifted more towards the blue region compared to that of the gemini surfactant micelles with a longer spacer-(CH(2))(n)-(n = 5, 12) at a given amount of the Ag-nanoseed solution. So, the growth of Ag-nanorods in the gemini micellar solutions depends on the spacer-chain length of gemini surfactants employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline CaBi2Ta2O9 thin films were grown on Pt/TiO2/SiO2/Si (100) substrates using a pulsed laser deposition technique. The influence of substrate temperature and oxygen pressure on crystallization and orientation of the films was studied. In-situ films deposited under a combination of higher substrate temperature and lower oxygen pressure exhibited a preferred c-axis orientation. Micro-Raman spectroscopy was used for complete understanding of phase evolution of CBT films. Thin films deposited at higher substrate temperatures showed larger grain size and higher surface roughness, observed by atomic force microscopy. The values of maximum polarization (2Pmnot, vert, similar13.4 μC/cm2), remanent polarization (2Prnot, vert, similar4.6 μC/cm2) and the coercive field Ec was about 112 kV/cm obtained for the film deposited at 650°C and annealed at 750°C. The room temperature, dielectric data revealed a dependence on the grain size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe(+) ion beam to an ion fluence of about 10(16) ions-cm(-2). Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti(5)Si(3) intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles thin films have wide range of applications such as nanoelectronics, magnetic storage devices, SERS substrate fabrication, optical grating and antireflective coating. Present work describes a method to prepare large area nanoparticles thin film of the order of few square centimeters. Thin film deposition has been done successfully on a wide range of conducting as well as non conducting substrates such as carbon-coated copper grid, silicon, m-plane of alumina, glass and (100) plane of NaCl single crystal. SEM, TEM and AFM studies have been done for microstructural characterization of the thin films. A basic mechanism has been proposed towards the understanding of the deposition process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum oxide films have been prepared by ion assisted deposition using argon ions with energy in the range 300 to 1000 eV and current density in the range 50 to 220 μA/cm2. The influence of ion energy and current density on the optical and structural properties has been investigated. The refractive index, packing density, and extinction coefficient are found to be very sensitive to the ion beam parameters and substrate temperatures. The as-deposited films were found to be amorphous and could be transformed into crystalline phase on annealing. However, the crystalline phases were different in films prepared at ambient and elevated substrate temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous thin films of different Al–Fe compositions were produced by plasma/vapor quenching during pulsed laser deposition. The chosen compositions Al72Fe28, Al40Fe60, and Al18Fe82 correspond to Al5Fe2 and B2-ordered AlFe intermetallic compounds and α–Fe solid solution, respectively. The films contained fine clusters that increased with iron content. The sequences of phase evolution observed in the heating stage transmission electron microscopy studies of the pulsed laser ablation deposited films of Al72Fe28, Al40Fe60, and Al18Fe82 compositions showed evidence of composition partitioning during crystallization for films of all three compositions. This composition partitioning, in turn, resulted in the evolution of phases of compositions richer in Fe, as well as richer in Al, compared to the overall film composition in each case. The evidence of Fe-rich phases was the B2 phase in Al72Fe28 film, the L12- and DO3-ordered phases in Al40Fe60 film, and the hexagonal ε–Fe in the case of the Al18Fe82 film. On the other hand, the Al-rich phases were Al13Fe4 for both Al72Fe28 and Al40Fe60 films and DO3 and Al5Fe2 phases in the case of Al18Fe82 film. We believe that this tendency of composition partitioning during crystallization from amorphous phase is a consequence of the tendency of clustering of the Fe atoms in the amorphous phase during nucleation. The body-centered cubic phase has a nucleation advantage over other metastable phases for all three compositions. The amorphization of Al18Fe82 composition and the evolution of L12 and ε–Fe phases in the Al–Fe system were new observations of this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, there has been growing interest in Ca modified BaTiO3 structures due to their larger electro-optic coefficients for their use in optical storage of information over conventional BaTiO3 crystals. Barium Calcium Titanate (BCT) shows promising applications in advanced laser systems, optical interconnects and optical storage devices. BaTiO3 thin films of varied Ca (3 at. % - 15 at. %) doping were deposited using pulsed laser ablation (KrF excimer laser) technique over Pt/Si substrates. The stoichiometric and the compositional analysis were carried out using EDAX and SIMS. The dielectric studies were done at the frequency regime of 40 Hz to 100 kHz at different ambient temperatures from 200 K to 600 K. The BCT thin films exhibited diffuse phase transition, which was of a typical non lead relaxor behavior and had high dielectric constant and low dielectric loss. The phase transition for the different compositions of BCT thin films was near the room temperature, showing a marked departure from the bulk phase transition. The C - V and the hysteresis behavior confirmed the ferroelectric nature below the phase transition and paraelectric at the room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the local electronic properties and the spatially resolved magnetoresistance of a nanostructured film of a colossal magnetoresistive (CMR) material by local conductance mapping (LCMAP) using a variable temperature Scanning Tunneling Microscope (STM) operating in a magnetic field. The nanostructured thin films (thickness ≈500nm) of the CMR material La0.67Sr0.33MnO3 (LSMO) on quartz substrates were prepared using chemical solution deposition (CSD) process. The CSD grown films were imaged by both STM and atomic force microscopy (AFM). Due to the presence of a large number of grain boundaries (GB's), these films show low field magnetoresistance (LFMR) which increases at lower temperatures. The measurement of spatially resolved electronic properties reveal the extent of variation of the density of states (DOS) at and close to the Fermi level (EF) across the grain boundaries and its role in the electrical resistance of the GB. Measurement of the local conductance maps (LCMAP) as a function of magnetic field as well as temperature reveals that the LFMR occurs at the GB. While it was known that LFMR in CMR films originates from the GB, this is the first investigation that maps the local electronic properties at a GB in a magnetic field and traces the origin of LFMR at the GB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of Ceria, Titania and Ziroonia have been prepared using Ion Assisted Deposition(IAD). The energy of ions was varied between 0 and 1 keV and current densities up to 220 μA/cm were used. It was found that the stress behaviour is dependent on ion species, i.e. Argon or Oxygen, ion energy and current density and substrate temperature apart from the material. While oeria files showed tensile stresses under the influence of argon ion bombardment at ambient temperature, they showed a sharp transition from tensile to compressive stress with increase in substrate temperature. When bombarded with oxygen ions they showed a transition from tensile to compressive stress with increase in energy. The titania films deposited with oxygen ions, on the other hand showed purely tensile stresses. Zirconia films deposited with oxygen ions, however, showed a transition from tensile to compressive stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, we report the deposition of zirconia thin films on Si(100) at various substrate temperatures by low-pressure metalorganic chemical vapor deposition (MOCVD). Three different zirconium complexes, viz., tetrakis(2,4-pentadionato)zirconium(IV), [Zr(pd)4], tetrakis(2,2,6,6-tetramethyl-3,5-heptadionato)zirconium(IV), [Zr(thd)4], and tetrakis(t-butyl-3-oxo-butanoato)zirconium(IV), [Zr(tbob)4] are used as precursors. The relationship between the molecular structures of the precursors and their thermal properties, as examined by TG/DTA is presented. The films deposited using these precursors have distinctly different morphology, though all of them are of the cubic phase. The films grown from Zr(thd)4 are well crystallized, showing faceted growth at 575°C, whereas the films grown from Zr(pd)4 and Zr(tbob)4 are not well crystallized, and display cracks. These differences in the observed microstructure may be attributed to the different chemical decomposition pathways of the precursors during the film growth, which influence the nucleation and the growth processes. This is also evidenced by the different kinetics of growth from these three precursors under otherwise identical CVD conditions. The details of thin film deposition, and film microstructure analysis by XRD and SEM is presented. The dielectric behavior of the films deposited from different precursors, as studied by C-V measurements, are compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of VO2(B), a metastable polymorph of vanadium dioxide, have been grown on glass by low-pressure metalorganic chemical vapor deposition (MOCVD). The films grown for 90 minutes have atypical microstructure, comprising micrometer-sized, island-like entities made up of numerous small, single-crystalline platelets (≅1 μm) emerging orthogonally from larger ones at the center. Microstructure evolution as a function of deposition time has been examined by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The metastable VO2(B) transforms to the stable rutile (R) phase at 550°C in inert ambient, which on cooling convert reversibly to M phase. Electron microscopy shows that annealing leads to the disintegration of the VO2(B) platelets into small crystallites of the rutile phase VO2(R), although the platelet morphology is retained. The magnitude of the jump in resistance at the semiconductor-to-metal, VO2(M)→VO2(R) phase transition depends on the arrangement of polycrystalline platelets in the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the characterization of carbonaceous aluminium oxide, Al2O3:C, films grown on Si(100) by metalorganic chemical vapor deposition. The focus is on the study of the effects of carbon on the dielectric properties of aluminium oxide in a qualitative manner. The carbon present in the aluminium oxide film derives from aluminium acetylacetonate used as the source of aluminium. As-grown films comprise nanometer-sized grains of alumina (∼ 20–50 nm) in an amorphous carbonaceous matrix, as examined by X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The films are shiny; they are smooth as observed by scanning electron microscopy (SEM). An attempt has been made to explore the defects (viz., oxide charge density) in the aluminium oxide films using room temperature high frequency capacitance – voltage (C-V) and current–voltage (I-V) measurements. The hysteresis and stretch-out in the high frequency C-V plots is indicative of charge trapping. The role of heteroatoms, as characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy, in the transport of charge in Al2O3:C films is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial LaNiO3 thin films have been grown on SrTiO3 and several other substrates by pulsed laser deposition. The films are observed to be metallic down to 15 K, and the temperature dependence of resistivity is similar to that of bulk LaNiO3. Epitaxial, c-axis oriented YBa2Cu3O7-x films with good superconducting properties have been grown on the LaNiO3 (100) films. I-V characteristics of the YBa2Cu3O7-x-LaNiO3 junction are linear, indicating ohmic contact between them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel, volatile, stable, oxo-β-ketoesterate complexes of titanium, whose synthesis requires only an inert atmosphere, as opposed to a glove box, have been developed. Using one of the complexes as the precursor, thin films of TiO2 have been deposited on glass substrates by metalorganic chemical vapor deposition (MOCVD) at temperatures ranging from 400°C to 525°C and characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. All the films grown in this temperature range are very smooth; those grown above 480°C consist of nearly monodisperse, nanocrystals of the anatase phase. Optical studies show the bandgaps in the range 3.4–3.7 eV for films grown at different temperatures. Thin films of anatase TiO2 have also been grown by spin-coating technique using another ketoesterate complex of titanium, demonstrating that the newly developed complexes can be successfully used for thin film growth by various chemical routes.