272 resultados para Signal correlation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utility of canonical correlation analysis (CCA) for domain adaptation (DA) in the context of multi-view head pose estimation is examined in this work. We consider the three problems studied in 1], where different DA approaches are explored to transfer head pose-related knowledge from an extensively labeled source dataset to a sparsely labeled target set, whose attributes are vastly different from the source. CCA is found to benefit DA for all the three problems, and the use of a covariance profile-based diagonality score (DS) also improves classification performance with respect to a nearest neighbor (NN) classifier.