431 resultados para STRUCTURAL OPTIMIZATION
Resumo:
We study the vaporization and precipitation dynamics of a nanosilica encapsulated water droplet by levitating it acoustically and heating it with a CO2 laser. For all concentrations, we observe three phases: solvent evaporation, surface agglomeration, and precipitation leading to bowl or ring shaped structures. At higher concentrations, ring reorientation and rotation are seen consistently. The surface temperature from an infrared camera is seen to be dependent on the final geometrical shape of the droplet and its rotation induced by the acoustic field of the levitator. With nonuniform particle distribution, these structures can experience rupture which modifies the droplet rotational speed. (C) 2010 American Institute of Physics. doi:10.1063/1.3493178]
Resumo:
A feature common to many adaptive systems for identification and control is the adjustment.of gain parameters in a manner ensuring the stability of the overall system. This paper puts forward a principle which assures such a result for arbitrary systems which are linear and time invariant except for the adjustable parameters. The principle only demands that a transfer function be positive real. This transfer function dependent on the structure of the system with respect to the parameters. Several examples from adaptive identification, control and observer schemes are given as illustrations of the conceptual simplification provided by the structural principle.
Resumo:
In an attempt to toughen the epoxy resin matrix for fiber-reinforced composite applications, a chemical modification procedure of a commercially available bisphenol-A-based epoxy resin using reactive liquid rubber HTBN [hydroxy-terminated poly(butadiene-co-acrylonitrile)] and TDI (tolylene diisocyanate) is described. The progress of the reaction and the structural changes during modification process are studied using IR spectroscopy, viscosity data, and chemical analysis (epoxy value determination). The studies support the proposition that TDI acts as a coupling agent between the epoxy and HTBN, forming a urethane linkage with the former and an oxazolidone ring with the latter. The chemical reactions that possibly take place during the modification are discussed.
Resumo:
2,3-Dihydroxybenzoic acid decarboxylase inAspergillus niger was induced by many substrate analogs including salicylate and gentisate. Catechol, which is the product, induced the enzyme tenfold. The purified enzyme was competitively inhibited by manyortho substituted benzoic acids. The Ki values for salicylate,o-fluoro ando-chloro benzoic acids were 0.12 mM, 0.12 mM, and 0.13 mM respectively; these values were lower than the Km value for the substrate. As the size of the group in theortho position increased, as in the case of bromo- and iodo-derivatives, there was an increase in their Ki values. The C-2 hydroxyl group was essential both for the induction and for interaction with the enzyme. The C-3 hydroxyl group was not necessary for induction or inhibition, but it might be essential for the catalysis.
Resumo:
To understand the effect of molecular weight and branching on the heats of vaporization (AH,) and their flow behavior, AH, and viscosity (7) were measured at different temperatures in the high molecular weight ester series: linear flexible di-n-alkyl sebacates and compact branched triglycerides with molecular weight ranging from 300 to 900. AHv" values (AHv corrected to 298 K) have been obtained with experimental AH, and also computed according to the group additivity method; a smaller-CH,- group value of 3.8 kJ mol-' compared to the normal value of 5.0 kJ mol-' is found to give good agreement with the experimental data (within 2-5% error). Both ester series have the same AH," irrespective of their molecular features, namely,shape, flexibility, and polarity, suggesting the coiling of the molecules during vaporization. The segmental motion of these ester series during their flow and its dependence on their molecular features unlike AH,' are demonstrated by the correlation of the enthalpy of activation for viscous flow (AH*) and the ratio AE,/AH* = n (AE, is the energy of vaporization) with molecular weight.
Resumo:
The ability of DNA sequences to adopt unusual structures under the superhelical torsional stress has been studied. Sequences that are forced to adopt unusual conformation in topologically constrained pBR322 form V DNA (Lk=0) were mapped using restriction enzymes as probes. Restriction enzymes such as BamHI, Pstl, Aval and HindIII could not cleave their recognition sequences. The removal of topological constraint relieved this inhibition. The influence of neighbouring sequences on the ability of a given sequence to adopt unusual DNA structure, presumably left handed Z conformation, was studied through single hit analysis. Using multiple cut restriction enzymes such as Narl and Fspl, it could be shown that under identical topological strain, the extent of structural alteration is greatly influenced by the neighbouring sequences. In the light of the variety of sequences and locations that could be mapped to adopt non-6 conformation in pBR322 form V DNA, restriction enzymes appear as potential structural probes for natural DNA sequences.
Resumo:
This paper deals with the reactive sputtering of titanium in an argon and oxygen mixture. The variation in cathode potential as a function of oxygen partial pressure has been explained in terms of cathode poisoning effects. The titania films deposited during this process have been studied for their structural and optical characteristics. The effect of substrate temperature (from 25 to 400 °C) and annealing (from 250 to 700 °C) on the packing density, refractive index, extinction coefficient, and crystallinity has been investigated. The refractive index varied from 2.24 to 2.46 and extinction coefficient from 2.6 × 10-3 to 10.4× 10-3 at 500 nm as the substrate temperature increased from 25 to 400 °C. The refractive index increased from 2.19 to 2.35 and extinction coefficient changed from 3.2× 10-3 to 11.6 × 10-3 at 500 nm as the annealing temperature was increased from 250 to 700 °C. Anatase and rutile phases have been observed in the films deposited at 400 °C substrate temperature and annealed at 300 °C. The changes in the optical constants at higher substrate temperature have been attributed to an increase in packing density, oxygen content, and crystallinity of the films.
Resumo:
DNA triple helices containing two thymine strands and one adenine strand have been studied, using model building followed by energy minimisation, for different orientations of the third strand resulting from variation in the hydrogen bonding between the Watson-Crick duplex and the third strand and the glycosidic torsion angle in the third strand. Our results show that the structure with a parallel orientation of the third strand, in which the third strand base forms Hoogsteen hydrogen bonds with the adenine base in the Watson-Crick duplex, is energetically the most favourable. An antiparallel orientation of the third strand is also possible, in which the third strand base hydrogen bonds to both the bases in the Watson-Crick duplex. This structure is energetically comparable to the parallel structure. For the parallel triplex a 200ps molecular dynamics simulation starting from two different starting structures indicates that at 300K significant structural heterogeneity exists in this tripler structure. The results are compared with existing structural data on this class of triplexes derived from theoretical and NMR techniques.
Resumo:
In an attempt to toughen the epoxy resin matrix for fiber-reinforced composite applications, a chemical modification procedure of a commercially available bisphenol-A-based epoxy resin using reactive liquid rubber HTBN [hydroxy-terminated poly(butadiene-co-acrylonitrile)] and TDI (tolylene diisocyanate) is described. The progress of the reaction and the structural changes during modification process are studied using IR spectroscopy, viscosity data, and chemical analysis (epoxy value determination). The studies support the proposition that TDI acts as a coupling agent between the epoxy and HTBN, forming a urethane linkage with the former and an oxazolidone ring with the latter. The chemical reactions that possibly take place during the modification are discussed.
Resumo:
Inovirus is a helical array of alpha-helical protein asymmetric units surrounding a DNA core. X-ray fibre diffraction studies show that the Pf1 species of Inovirus can undergo a reversible temperature-induced transition between two similar structural forms having slightly different virion helix parameters. Molecular models of the two forms show no evidence for altered interactions between the protein and either the solvent or the viral DNA; but there are significant differences in the shape and orientation of the protein asymmetric unit, related to the changes in the virion parameters. Normal modes involving libration of whole asymmetric units are in a frequency range with appreciable entropy of libration, and the structural transition may be related to changes in libration.
Resumo:
The dideoxygenation reaction of 1,3;4,6-di-O-alkylidene-2,5-di-S-methylthiocarbonyl-D-mannitol derivatives under Barton-McCombie reaction conditions gave the hexahydrodipyranothiophenes 4 and 7 instead of the expected 2,5-dideoxy products. Structural and conformational information on these novel derivatives has been obtained by NMR spectroscopy, single-crystal X-ray crystallography and molecular mechanics calculations.
Resumo:
Inovirus is a helical array of agr-helical protein asymmetric units surrounding a DNA core. X-ray fibre diffraction studies show that the Pf1 species of Inovirus can undergo a reversible temperature-induced transition between two similar structural forms having slightly different virion helix parameters. Molecular models of the two forms show no evidence for altered interactions between the protein and either the solvent or the viral DNA; but there are significant differences in the shape and orientation of the protein asymmetric unit, related to the changes in the virion parameters. Normal modes involving libration of whole asymmetric units are in a frequency range with appreciable entropy of libration, and the structural transition may be related to changes in libration.
Resumo:
Hydroxyapatite(OHAp)-based ceramic composites with added ZrO2 have been prepared both by sintering at 1400 °C and by hot isostatic pressing (HIP) at 1450 °C and 140 MPa pressure (argon atmosphere). The development of the crystalline phases and the microstructure of the composites have been examined using X-ray diffraction, electron microscopy, infrared and magic-angle spinning nuclear magnetic resonance (MASNMR) spectroscopic techniques. The fracture toughness and biocompatibility of the composites have also been studied. The effect of the addition of CeO2- and Y2O3-stabilized ZrO2 and of simple monoclinic ZrO2 to the initial physical mixture, on the structure and properties of the resulting composites has been investigated. In most of the sintered or HIP samples, the OHAp decomposes into tricalcium phosphate (β-TCP). CaO, which forms as a product of decomposition, dissolves completely in ZrO2 and stabilizes the latter in its cubic/tetragonal phase. Presence of the β-TCP phase in the product seems to be the result of a structural synergistic effect of hexagonal OHAp. Two structurally distinct orthophosphate groups have been identified in the composites by MASNMR of 31P and attributed to decomposition products of OHAp at higher temperatures. The composites possess high KIC values (2–3 times higher than that of pure OHAp). Decomposition of hydroxyapatite gives rise to differences in microstructure between HIP and simply sintered composites although fracture toughness values are similar in magnitude indicating the presence of several toughening mechanisms. The in vitro SP2-O cell test suggests that these composites possess good biocompatibility. The combination of good biocompatibility, desirable microstructure and easy availability of initial reactants indicates that the simply sintered composite of OHAp and monoclinic ZrO2(ZAP-30) appears to be the most suitable for prosthetic applications.
Resumo:
The structures of Ca0.5Ti2P3O12 and Sr0.5Ti2P3O12, low-thermal-expansion materials, have been refined by the Rietveld method using high-resolution powder X-ray diffraction (XRD) data. The assignment of space group R[3 with combining macron] to NASICON-type compounds containing divalent cations is confirmed. 31P magic-angle spinning nuclear magnetic resonance (MASNMR) data are presented as supporting data. A comparison of changes in the polyhedral network resulting from the cation distribution, is made with NaTi2P3O12 and Nb2P3O12. Factors that may govern thermal expansion in this family of compounds are discussed.