339 resultados para Relational power
Resumo:
This paper addresses the problem of finding outage-optimal power control policies for wireless energy harvesting sensor (EHS) nodes with automatic repeat request (ARQ)-based packet transmissions. The power control policy of the EHS specifies the transmission power for each packet transmission attempt, based on all the information available at the EHS. In particular, the acknowledgement (ACK) or negative acknowledgement (NACK) messages received provide the EHS with partial information about the channel state. We solve the problem of finding an optimal power control policy by casting it as a partially observable Markov decision process (POMDP). We study the structure of the optimal power policy in two ways. First, for the special case of binary power levels at the EHS, we show that the optimal policy for the underlying Markov decision process (MDP) when the channel state is observable is a threshold policy in the battery state. Second, we benchmark the performance of the EHS by rigorously analyzing the outage probability of a general fixed-power transmission scheme, where the EHS uses a predetermined power level at each slot within the frame. Monte Carlo simulation results illustrate the performance of the POMDP approach and verify the accuracy of the analysis. They also show that the POMDP solutions can significantly outperform conventional ad hoc approaches.
Resumo:
The presence of software bloat in large flexible software systems can hurt energy efficiency. However, identifying and mitigating bloat is fairly effort intensive. To enable such efforts to be directed where there is a substantial potential for energy savings, we investigate the impact of bloat on power consumption under different situations. We conduct the first systematic experimental study of the joint power-performance implications of bloat across a range of hardware and software configurations on modern server platforms. The study employs controlled experiments to expose different effects of a common type of Java runtime bloat, excess temporary objects, in the context of the SPECPower_ssj2008 workload. We introduce the notion of equi-performance power reduction to characterize the impact, in addition to peak power comparisons. The results show a wide variation in energy savings from bloat reduction across these configurations. Energy efficiency benefits at peak performance tend to be most pronounced when bloat affects a performance bottleneck and non-bloated resources have low energy-proportionality. Equi-performance power savings are highest when bloated resources have a high degree of energy proportionality. We develop an analytical model that establishes a general relation between resource pressure caused by bloat and its energy efficiency impact under different conditions of resource bottlenecks and energy proportionality. Applying the model to different "what-if" scenarios, we predict the impact of bloat reduction and corroborate these predictions with empirical observations. Our work shows that the prevalent software-only view of bloat is inadequate for assessing its power-performance impact and instead provides a full systems approach for reasoning about its implications.
Resumo:
We study the problem of analyzing influence of various factors affecting individual messages posted in social media. The problem is challenging because of various types of influences propagating through the social media network that act simultaneously on any user. Additionally, the topic composition of the influencing factors and the susceptibility of users to these influences evolve over time. This problem has not been studied before, and off-the-shelf models are unsuitable for this purpose. To capture the complex interplay of these various factors, we propose a new non-parametric model called the Dynamic Multi-Relational Chinese Restaurant Process. This accounts for the user network for data generation and also allows the parameters to evolve over time. Designing inference algorithms for this model suited for large scale social-media data is another challenge. To this end, we propose a scalable and multi-threaded inference algorithm based on online Gibbs Sampling. Extensive evaluations on large-scale Twitter and Face book data show that the extracted topics when applied to authorship and commenting prediction outperform state-of-the-art baselines. More importantly, our model produces valuable insights on topic trends and user personality trends beyond the capability of existing approaches.
Resumo:
We consider the problem of joint routing, scheduling and power control in a multihop wireless network when the nodes have multiple antennas. We focus on exploiting the multiple degrees-of-freedom available at each transmitter and receiver due to multiple antennas. Specifically we use multiple antennas at each node to form multiple access and broadcast links in the network rather than just point to point links. We show that such a generic transmission model improves the system performance significantly. Since the complexity of the resulting optimization problem is very high, we also develop efficient suboptimal solutions for joint routing, scheduling and power control in this setup.
Resumo:
Variable speed operation of microhydro power plants is gaining popularity due to the benefits that accrue from their use and the development of suitable generator control systems. This paper highlights the benefits of variable speed systems over conventional systems and also proposes a simple emulator for hydraulic turbines that operate in variable speed fixed flow rate mode. The emulator consists of an uncontrolled separately excited DC motor with additional resistors and has performance characteristics similar to that of the hydraulic turbine.
Resumo:
This paper addresses the problem of finding optimal power control policies for wireless energy harvesting sensor (EHS) nodes with automatic repeat request (ARQ)-based packet transmissions. The EHS harvests energy from the environment according to a Bernoulli process; and it is required to operate within the constraint of energy neutrality. The EHS obtains partial channel state information (CSI) at the transmitter through the link-layer ARQ protocol, via the ACK/NACK feedback messages, and uses it to adapt the transmission power for the packet (re)transmission attempts. The underlying wireless fading channel is modeled as a finite state Markov chain with known transition probabilities. Thus, the goal of the power management policy is to determine the best power setting for the current packet transmission attempt, so as to maximize a long-run expected reward such as the expected outage probability. The problem is addressed in a decision-theoretic framework by casting it as a partially observable Markov decision process (POMDP). Due to the large size of the state-space, the exact solution to the POMDP is computationally expensive. Hence, two popular approximate solutions are considered, which yield good power management policies for the transmission attempts. Monte Carlo simulation results illustrate the efficacy of the approach and show that the approximate solutions significantly outperform conventional approaches.
Resumo:
A power scalable receiver architecture is presented for low data rate Wireless Sensor Network (WSN) applications in 130nm RF-CMOS technology. Power scalable receiver is motivated by the ability to leverage lower run-time performance requirement to save power. The proposed receiver is able to switch power settings based on available signal and interference levels while maintaining requisite BER. The Low-IF receiver consists of Variable Noise and Linearity LNA, IQ Mixers, VGA, Variable Order Complex Bandpass Filter and Variable Gain and Bandwidth Amplifier (VGBWA) capable of driving variable sampling rate ADC. Various blocks have independent power scaling controls depending on their noise, gain and interference rejection (IR) requirements. The receiver is designed for constant envelope QPSK-type modulation with 2.4GHz RF input, 3MHz IF and 2MHz bandwidth. The chip operates at 1V Vdd with current scalable from 4.5mA to 1.3mA and chip area of 0.65mm2.
Resumo:
This study investigates the application of support vector clustering (SVC) for the direct identification of coherent synchronous generators in large interconnected multi-machine power systems. The clustering is based on coherency measure, which indicates the degree of coherency between any pair of generators. The proposed SVC algorithm processes the coherency measure matrix that is formulated using the generator rotor measurements to cluster the coherent generators. The proposed approach is demonstrated on IEEE 10 generator 39-bus system and an equivalent 35 generators, 246-bus system of practical Indian southern grid. The effect of number of data samples and fault locations are also examined for determining the accuracy of the proposed approach. An extended comparison with other clustering techniques is also included, to show the effectiveness of the proposed approach in grouping the data into coherent groups of generators. This effectiveness of the coherent clusters obtained with the proposed approach is compared in terms of a set of clustering validity indicators and in terms of statistical assessment that is based on the coherency degree of a generator pair.
Resumo:
This paper considers the design of a power-controlled reverse channel training (RCT) scheme for spatial multiplexing (SM)-based data transmission along the dominant modes of the channel in a time-division duplex (TDD) multiple-input and multiple-output (MIMO) system, when channel knowledge is available at the receiver. A channel-dependent power-controlled RCT scheme is proposed, using which the transmitter estimates the beamforming (BF) vectors required for the forward-link SM data transmission. Tight approximate expressions for 1) the mean square error (MSE) in the estimate of the BF vectors, and 2) a capacity lower bound (CLB) for an SM system, are derived and used to optimize the parameters of the training sequence. Moreover, an extension of the channel-dependent training scheme and the data rate analysis to a multiuser scenario with M user terminals is presented. For the single-mode BF system, a closed-form expression for an upper bound on the average sum data rate is derived, which is shown to scale as ((L-c - L-B,L- tau)/L-c) log logM asymptotically in M, where L-c and L-B,L- tau are the channel coherence time and training duration, respectively. The significant performance gain offered by the proposed training sequence over the conventional constant-power orthogonal RCT sequence is demonstrated using Monte Carlo simulations.
Resumo:
Transmit antenna selection (AS) is a popular, low hardware complexity technique that improves the performance of an underlay cognitive radio system, in which a secondary transmitter can transmit when the primary is on but under tight constraints on the interference it causes to the primary. The underlay interference constraint fundamentally changes the criterion used to select the antenna because the channel gains to the secondary and primary receivers must be both taken into account. We develop a novel and optimal joint AS and transmit power adaptation policy that minimizes a Chernoff upper bound on the symbol error probability (SEP) at the secondary receiver subject to an average transmit power constraint and an average primary interference constraint. Explicit expressions for the optimal antenna and power are provided in terms of the channel gains to the primary and secondary receivers. The SEP of the optimal policy is at least an order of magnitude lower than that achieved by several ad hoc selection rules proposed in the literature and even the optimal antenna selection rule for the case where the transmit power is either zero or a fixed value.
Resumo:
We consider a two user fading Multiple Access Channel with a wire-tapper (MAC-WT) where the transmitter has the channel state information (CSI) to the intended receiver but not to the eavesdropper (eve). We provide an achievable secrecy sum-rate with optimal power control. We next provide a secrecy sum-rate with optimal power control and cooperative jamming (CJ). We then study an achievable secrecy sum rate by employing an ON/OFF power control scheme which is more easily computable. We also employ CJ over this power control scheme. Results show that CJ boosts the secrecy sum-rate significantly even if we do not know the CSI of the eve's channel. At high SNR, the secrecy sum-rate (with CJ) without CSI of the eve exceeds the secrecy sum-rate (without CJ) with full CSI of the eve.
Resumo:
This paper presents the design of a start up power circuit for a control power supply (CPS) which feeds power to the sub-systems of High Power Converters (HPC). The sub-systems such as gate drive card, annunciation card, protection and delay card etc; needs to be provided power for the operation of a HPC. The control power supply (CPS) is designed to operate over a wide range of input voltage from 90Vac to 270Vac. The CPS output supplies power at a desired voltage of Vout =24V to the auxiliary sub-systems of the HPC. During the starting, the power supply to the control circuitry of CPS in turn, is obtained using a separate start-up power supply. This paper discusses the various design issues of the start-up power circuit to ensure that start-up and shut down of the CPS occurs reliably. The CPS also maintains the power factor close to unity and low total harmonic distortion in input current. The paper also provides design details of gate drive circuits employed for the CPS as well as the design of on-board power supply for the CPS. Index terms: control power supply, start-up power supply, DSFC, pre-regulator
Resumo:
In this paper we consider a single discrete time queue with infinite buffer. The channel may experience fading. The transmission rate is a linear function of power used for transmission. In this scenario we explicitly obtain power control policies which minimize mean power and/or mean delay. There may also be peak power constraint.
Resumo:
Femtocells are a new concept which improves the coverage and capacity of a cellular system. We consider the problem of channel allocation and power control to different users within a Femtocell. Knowing the channels available, the channel states and the rate requirements of different users the Femtocell base station (FBS), allocates the channels to different users to satisfy their requirements. Also, the Femtocell should use minimal power so as to cause least interference to its neighboring Femtocells and outside users. We develop efficient, low complexity algorithms which can be used online by the Femtocell. The users may want to transmit data or voice. We compare our algorithms with the optimal solutions.
Resumo:
In underlay cognitive radio (CR), a secondary user (SU) can transmit concurrently with a primary user (PU) provided that it does not cause excessive interference at the primary receiver (PRx). The interference constraint fundamentally changes how the SU transmits, and makes link adaptation in underlay CR systems different from that in conventional wireless systems. In this paper, we develop a novel, symbol error probability (SEP)-optimal transmit power adaptation policy for an underlay CR system that is subject to two practically motivated constraints, namely, a peak transmit power constraint and an interference outage probability constraint. For the optimal policy, we derive its SEP and a tight upper bound for MPSK and MQAM constellations when the links from the secondary transmitter (STx) to its receiver and to the PRx follow the versatile Nakagami-m fading model. We also characterize the impact of imperfectly estimating the STx-PRx link on the SEP and the interference. Extensive simulation results are presented to validate the analysis and evaluate the impact of the constraints, fading parameters, and imperfect estimates.