337 resultados para POLARIZATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphane, hydrogenated graphene, can be patterned into electronic devices by selectively removing hydrogen atoms. The most simple of such devices is the so-called nanoroad, analogous to the graphene nanoribbon, where confinement-and the opening of a gap-is obtained without the need for breaking the carbon bonds. In this work we address the electronic transport properties of such systems considering different hydrogen impurities within the conduction channel. We show, using a combination of density functional theory and non-equilibrium Green's functions, that hydrogen leads to significant changes in the transport properties and in some cases to current polarization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present investigation, the corrosive behaviour of Al 6061-TiN particulate composites prepared by liquid metallurgy has been studied in chloride medium using electroanalytical techniques such as Tafel, cyclic polarization and electrochemical impedance spectroscopy (EIS). Surface morphology of the sample electrodes was examined using scanning electron micrography and energy dispersive X-ray methods. X-ray diffraction technique was used to confirm inclusion of TiN particulates in the matrix alloy and identify the alloying elements and intermetallic compounds in the Al 6061 composites. Polarization studies indicate an increase in the corrosion resistance in composites compared to the matrix alloy. EIS study reveals that the polarization resistance (R (p)) increases with increase in TiN content in composites, thus confirming improved corrosion resistance in composites. The observed decrease in corrosion rate in the case of composites is due to decoupling between TiN particles and Al 6061 alloy. It is understood that after the initiation of corrosion, interfacial corrosion products may have decoupled the conducting ceramic TiN from Al 6061 matrix alloy thus eliminating the galvanic effect between them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electric-field induced nonlinear actuation behavior is demonstrated in a bulk nanotube (CNT) structure under ambient conditions. Completely recoverable and non-degradable actuation over several cycles of electric-field is measured in these structures. A symmetric and polarity independent displacement corresponding up to an axial strain of 14% is measured upon application of a low strength electric field of 4.2 kV/m in the axial direction. However, a much lower strain of similar to 1% is measured in the radial (or, transverse) direction. Furthermore, the electric field induced actuation increases by more than a factor of 2 upon impregnating the CNT cellular structure with copper oxide nano-particles. An electrostriction mechanism, based on the electric-field induced polarization of CNT strands, is proposed to account for the reported actuation behavior. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron oxide (B2O3) addition to pre-reacted K0.5Na0.5NbO3 (KNN) powders facilitated swift densification at relatively low sintering temperatures which was believed to be a key to minimize potassium and sodium loss. The base KNN powder was synthesized via solid-state reaction route. The different amounts (0.1-1 wt%) of B2O3 were-added, and ceramics were sintered at different temperatures and durations to optimize the amount of B2O3 needed to obtain KNN pellets with highest possible density and grain size. The 0.1 wt% B2O3-added KNN ceramics sintered at 1,100 A degrees C for 1 h exhibited higher density (97 %). Scanning electron microscopy studies confirmed an increase in average grain size with increasing B2O3 content at appropriate temperature of sintering and duration. The B2O3-added KNN ceramics exhibited improved dielectric and piezoelectric properties at room temperature. For instance, 0.1 wt% B2O3-added KNN ceramic exhibited d (33) value of 116 pC/N which is much higher than that of pure KNN ceramics. Interestingly, all the B2O3-added (0.1-1 wt%) KNN ceramics exhibited polarization-electric field (P vs. E) hysteresis loops at room temperature. The remnant polarization (P (r)) and coercive field (E (c)) values are dependent on the B2O3 content and crystallite size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide experimental evidence supporting the vectorial theory for determining electric field at and near the geometrical focus of a cylindrical lens. This theory provides precise distribution of field and its polarization effects. Experimental results show a close match (approximate to 95% using (2)-test) with the simulation results (obtained using vectorial theory). Light-sheet generated both at low and high NA cylindrical lens shows the importance of vectorial theory for further development of light-sheet techniques. Potential applications are in planar imaging systems (such as, SPIM, IML-SPIM, imaging cytometry) and spectroscopy. Microsc. Res. Tech. 77:105-109, 2014. (c) 2014 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural dynamics, dielectric permittivity and ferroelectric properties in poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) (PVDF/PMMA) blends with respect to crystalline morphology was systematically investigated in presence of amine functionalized MWNTs (NH2-MWNTs) using dielectric spectroscopy. The crystalline morphology and the crystallization driven demixing in the blends was assessed by light microscopy (LM), wide angle X-ray diffraction (WXRD) and, in situ, by shear rheology. The crystal nucleation activity of PVDF was greatly induced by NH2-MWNTs, which also showed two distinct structural relaxations in dielectric loss owing to mobility confinement of PVDF chains and smaller cooperative lengths. The presence of crystal-amorphous interphase was supported by the presence of interfacial polarization at lower frequencies in the dielectric loss spectra. On contrary, the control blends showed a single broad relaxation at higher frequency due to defective crystal nuclei. This was further supported by monitoring the dielectric relaxations during isothermal crystallization of PVDF in the blends. These observations were addressed with respect to the spherulite sizes which were observed to be larger in case of blends with NH2-MWNTs. Higher dielectric permittivity with minimal losses was also observed in blends with NH2-MWNTs as compared to neat PVDF. Polarization obtained using P-E (polarization-electric field) hysteresis loops was higher in case of blends with NH2-MWNTs in contrast to control blends and PVDF. These observations were corroborated with the charge trapped at the crystal-amorphous interphase and larger crystal sizes in the blends with NH2-MWNTs. The microstructure and localization of MWNTs were assessed using SEM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency-dependent dielectric relaxation of Pb0.94Sr0.06](Mn1/3Sb2/3)(0.05)(Zr0.52Ti0.48)(0.95)]O-3 ceramics, synthesized in pure perovskite phase by a solid-state reaction technique is investigated in the temperature range from 303 to 773 K by alternating-current impedance spectroscopy. Using Cole-Cole model, an analysis of the imaginary part of the dielectric permittivity with frequency is performed assuming a distribution of relaxation times. The scaling behavior of the imaginary part of the electric modulus suggests that the relaxation describes the same mechanism at various temperatures. The variation of dielectric constant with temperature is explained considering the space-charge polarization. The SEM indicates that the sample has single phase with an average grain size similar to 14.2 mu m. The material exhibits tetragonal structure. A detailed temperature dependent dielectric study at various frequencies has also been performed. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) composites were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction, thermo gravimetric, thermo mechanical, differential scanning calorimetry, fourier transform infrared (FTIR) and Impedance analyser for their structural, thermal and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. However, there was no significant difference in the glass transition (T (g) ) temperature between the polymer and the composite. The appearance of additional vibrational frequencies in the range 400-600 cm(-1) in FTIR spectra indicated a possible interaction between PMMA and CCTO. The composite, with 38 vol% of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low-frequency relaxation is attributed to the interfacial polarization/MWS effect. The origin of AC conductivity particularly in the high-frequency region was attributed to the electronic polarization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites comprising Poly(Methyl Methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) via melt mixing followed by hot pressing were fabricated. These were characterized using X-ray diffraction, thermo gravimetric, scanning electron microscopy, and Impedance analyzer for their structural, morphology, and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. The composite, with 38 Vol % of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low frequency relaxation is attributed to the space charge polarization/MWS effect. Theoretical models were employed to rationalize the dielectric behavior of these composites. At higher temperatures, the relaxation peak shifts to higher frequencies, due to the merging of both beta and alpha relaxations into a single dielectric dispersion peak. The AC conductivity in the high frequency region was attributed to the electronic polarization. POLYM. ENG. SCI., 54:551-558, 2014. (c) 2013 Society of Plastics Engineers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure of Nd1-xYxMnO3 (x-0-0.5) is studied using x-ray absorption near-edge structure (XANES) spectroscopy at the Mn K-edge along with the DFT-based LSDA+U and real space cluster calculations. The main edge of the spectra does not show any variation with doping. The pre-edge shows two distinct features which appear well-separated with doping. The intensity of the pre-edge decreases with doping. The theoretical XANES were calculated using real space multiple scattering methods which reproduces the entire experimental spectra at the main edge as well as the pre-edge. Density functional theory calculations are used to obtain the Mn 4p, Mn 3d and O 2p density of states. For x=0, the site-projected density of states at 1.7 eV above Fermi energy shows a singular peak of unoccupied e(g) (spin-up) states which is hybridized Mn 4p and O 2p states. For x=0.5, this feature develops at a higher energy and is highly delocalized and overlaps with the 3d spin-down states which changes the pre-edge intensity. The Mn 4p DOS for both compositions, show considerable difference between the individual p(x), p(y) and p(z)), states. For x=0.5, there is a considerable change in the 4p orbital polarization suggesting changes in the Jahn-Teller effect with doping. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autocatalytic duplex Ni-P/Ni-W-P coatings were deposited on AZ31B magnesium alloy using stabilizer free nickel carbonate bath. Some of the coated specimens were passivated in chromate solution with and without heat treatment. Plain Ni-P coatings were also prepared for comparison. Coatings were characterized for their surface morphology, composition and corrosion resistance. Energy dispersive analysis of X-ray (EDX) showed that the phosphorous content in the Ni-P coating is 6 wt.% and for Ni-W-P it reduced to 3 wt.% due to the codeposition of tungsten in the Ni-P coating. Marginal increase in P and W contents was observed on passivated coupons along with Cr (0.18 wt.%) and O (2.8 wt.%) contents. Field emission scanning electron microscopy (FESEM) examination of these coating surfaces exhibited the nodular morphology. Chromate passivated surfaces showed the presence of uniformly distributed bright Ni particles along with nodules. Potenfiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out in deaerated 0.15 M NaCI solution to find out the corrosion resistance of the coatings. Among the coatings developed, duplex-heat treated-passivated (duplex-HIP) coatings showed lower corrosion current density (i(corr)) and higher polarization resistance (R-p) indicating the improved corrosion resistance. The charge transfer resistance (R-ct) value obtained for the duplex-HIP was about 170 times higher compared to that for Ni P coating. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CaSiO3 nano-ceramic powder doped with Pr3+ has been prepared by solution combustion method. The powder Ca0.5Pr0.05SiO3 is investigated for its dielectric and electrical properties at room temperature to study the effect of doping. The sample is characterized by X-ray diffraction and infrared spectroscopy. The size of either of volume elements of CaSiO3:Pr3+ estimated from transmission electron microscopy is about 180-200 nm. The sample shows colossal dielectric response at room temperature. This colossal dielectric behaviour follows Debye-type relaxation and can be explained by Maxwell-Wagner (MW) polarization. However, analysis of impedance and electric modulus data using Cole-Cole plot shows that it deviates from ideal Debye behaviour resulting from the distribution of relaxation times. The distribution in the relaxation times may be attributed to existence of electrically heterogeneous grains, insulating grain boundary, and electrode contact regions. Doping, thus, results in substantial modifications in the dielectric and electrical properties of the nano-ceramic CaSiO3. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combined mechanism involving phononic and electronic processes is suggested for superconductivity in substitutionally doped graphene. The electronic mechanism is similar to the one used for doped fullerene system, MxC60 (M K, Rb, etc.) and triggered by bond polarization due to doped impurities such as B or Al. It is found that on increasing the doping, the superconducting critical temperature can be raised to room temperature. The details of the combined model are given along with the predicted values of T-c. (C) 2013 Elsevier Ltd. All rights reserved,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chiral metamaterials can have diverse technological applications, such as engineering strongly twisted local electromagnetic fields for sensitive detection of chiral molecules, negative indices of refraction, broadband circular polarization devices, and many more. These are commonly achieved by arranging a group of noble-metal nanoparticles in a chiral geometry, which, for example, can be a helix, whose chiroptical response originates in the dynamic electromagnetic interactions between the localized plasmon modes of the individual nanoparticles. A key question relevant to the chiroptical response of such materials is the role of plasmon interactions as the constituent particles are brought closer, which is investigated in this paper through theoretical and experimental studies. The results of our theoretical analysis, when the particles are brought in close proximity are dramatic, showing a large red shift and enhancement of the spectral width and a near-exponential rise in the strength of the chiroptical response. These predictions were further confirmed with experimental studies of gold and silver nanoparticles arranged on a helical template, where the role of particle separation could be investigated in a systematic manner. The ``optical chirality'' of the electromagnetic fields in the vicinity of the nanoparticles was estimated to be orders of magnitude larger than what could be achieved in all other nanoplasmonic geometries considered so far, implying the suitability of the experimental system for sensitive detection of chiral molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term deterioration in the performance of PEFCs is attributed largely to reduction in active area of the platinum catalyst at cathode, usually caused by carbon-support corrosion. Multi-walled carbon-nanotubes (MWCNTs) as cathode-catalyst support are found to enhance long-term stability of platinum catalyst (Pt) in relation to non-graphitic carbon. In addition, highly graphitic MWCNTs (G-MWCNTs) are found to be electrochemically more stable than pristine MWCNTs. This is because graphitic-carbon-supported-Pt (Pt/MWCNTs) cathodes exhibit higher resistance to carbon corrosion in-relation to non-graphitic-carbon-supported-Pt (Pt/C) cathodes in PEFCs during accelerated stress-test (AST) as evidenced by chronoamperometry and carbon dioxide studies. The corresponding change in electrochemical surface area (ESA), cell performance, and charge-transfer resistance are monitored through cyclic voltammetry, cell polarization, and impedance measurements, respectively. The extent of crystallinity, namely amorphous or graphitic nature of the three supports, is examined by Raman spectroscopy. X-ray diffraction and transmission electron microscopy studies both prior and after AST suggest lesser deformation in catalyst layer and catalyst particles for Pt/G-MWCNTs and Pt/MWCNTs cathodes in relation to Pt/C cathodes, reflecting that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt particles. It is also found that with increasing degree of graphitization, the electrochemical stability for MWCNTs increases due to the lesser surface defects.