294 resultados para Meteoric fluids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A paradigm for internally driven matter is the active nematic liquid crystal, whereby the equations of a conventional nematic are supplemented by a minimal active stress that violates time-reversal symmetry. In practice, active fluids may have not only liquid-crystalline but also viscoelastic polymer degrees of freedom. Here we explore the resulting interplay by coupling an active nematic to a minimal model of polymer rheology. We find that adding a polymer can greatly increase the complexity of spontaneous flow, but can also have calming effects, thereby increasing the net throughput of spontaneous flow along a pipe (a ``drag-reduction'' effect). Remarkably, active turbulence can also arise after switching on activity in a sufficiently soft elastomeric solid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several operational aspects for thermal power plants in general are non-intuitive and involve simultaneous optimization of a number of operational parameters. In the case of solar operated power plants, it is even more difficult due to varying heat source temperatures induced by variability in insolation levels. This paper introduces a quantitative methodology for load regulation of a CO2 based Brayton cycle power plant using the `thermal efficiency and specific work output' coordinate system. The analysis shows that a transcritical CO2 cycle offers more flexibility under part load performance than the supercritical cycle in case of non-solar power plants. However, for concentrated solar power, where efficiency is important, supercritical CO2 cycle fares better than transcritical CO2 cycle. A number of empirical equations relating heat source temperature, high side pressure with efficiency and specific work output are proposed which could assist in generating control algorithms. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid granular flows are far-from-equilibrium-driven dissipative systems where the interaction between the particles dissipates energy, and so a continuous supply of energy is required to agitate the particles and facilitate the rearrangement required for the flow. This is in contrast to flows of molecular fluids, which are usually close to equilibrium, where the molecules are agitated by thermal fluctuations. Sheared granular flows form a class of flows where the energy required for agitating the particles in the flowing state is provided by the mean shear. These flows have been studied using the methods of kinetic theory of gases, where the particles are treated in a manner similar to molecules in a molecular gas, and the interactions between particles are treated as instantaneous energy-dissipating binary collisions. The validity of the assumptions underlying kinetic theory, and their applicability to the idealistic case of dilute sheared granular flows are first discussed. The successes and challenges for applying kinetic theory for realistic dense sheared granular flows are then summarised. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prime movers and refrigerators based on thermoacoustics have gained considerable importance toward practical applications in view of the absence of moving components, reasonable efficiency, use of environmental friendly working fluids, etc. Devices such as twin Standing Wave ThermoAcoustic Prime Mover (SWTAPM), Traveling Wave ThermoAcoustic Prime Mover (TWTAPM) and thermoacoustically driven Standing Wave ThermoAcoustic Refrigerator (SWTAR) have been studied by researchers. The numerical modeling and simulation play a vital role in their development. In our efforts to build the above thermoacoustic systems, we have carried out numerical analysis using the procedures of CFD on the above systems. The results of the analysis are compared with those of DeltaEC (freeware from LANL, USA) simulations and the experimental results wherever possible. For the CFD analysis commercial code Fluent 6.3.26 has been used along with the necessary boundary conditions for different working fluids at various average pressures. The results of simulation indicate that choice of the working fluid and the average pressure are critical to the performance of the above thermoacoustic devices. Also it is observed that the predictions through the CFD analysis are closer to the experimental results in most cases, compared to those of DeltaEC simulations. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present experimental work is concerned with the study of amplitude dependent acoustic response of an isothermal coaxial swirling jet. The excitation amplitude is increased in five distinct steps at the burner's Helmholtz resonator mode (i.e., 100 Hz). Two flow states are compared, namely, sub-critical and super-critical vortex breakdown (VB) that occur before and after the critical conical sheet breakdown, respectively. The geometric swirl number is varied in the range 2.14-4.03. Under the influence of external pulsing, global response characteristics are studied based on the topological changes observed in time-averaged 2D flow field. These are obtained from high resolution 2D PIV (particle image velocimetry) in the longitudinal-mid plane. PIV results also illustrate the changes in the normalized vortex core coordinates (r(vcc)/(r(vcc))(0) (Hz), y(vcc)/(y(vcc))(0) (Hz)) of internal recirculation zone (IRZ). A strong forced response is observed at 100 Hz (excitation frequency) in the convectively unstable region which get amplified based on the magnitude of external forcing. The radial extent of this forced response region at a given excitation amplitude is represented by the acoustic response region (b). The topological placement of the responsive convectively unstable region is a function of both the intensity of imparted swirl (characterized by swirl number) and forcing amplitude. It is observed that for sub-critical VB mode, an increase in the excitation amplitude till a critical value shifts the vortex core centre (particularly, the vortex core moves downstream and radially outwards) leading to drastic fanning-out/widening of the IRZ. This is accompanied by similar to 30% reduction in the recirculation velocity of the IRZ. It is also observed that b < R (R: radial distance from central axis to outer shear layer-OSL). At super-critical amplitudes, the sub-critical IRZ topology transits back (the vortex core retracts upstream and radially inwards) and finally undergoes a transverse shrinkage ((r(vcc))/(r(vcc))(0 Hz) decreases by similar to 20%) when b >= R. In contrast, the vortex core of super-critical breakdown mode consistently spreads radially outwards and is displaced further downstream. Finally, the IRZ fans-out at the threshold excitation amplitude. However, the acoustic response region b is still less than R. This is explained based on the characteristic geometric swirl number (S-G) of the flow regimes. The super-critical flow mode with higher S-G (hence, higher radial pressure drop due to rotational effect which scales as Delta P similar to rho u theta(2) and acts inwards towards the center line) compared to sub-critical state imposes a greater resistance to the radial outward spread of b. As a result, the acoustic energy supplied to the super-critical flow mode increases the degree of acoustic response at the pulsing frequency and energizes its harmonics (evident from power spectra). As a disturbance amplifier, the stronger convective instability mode within the flow structure of super-critical VB causes the topology to widen/fan-out severely at threshold excitation amplitude. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many boundary value problems occur in a natural way while studying fluid flow problems in a channel. The solutions of two such boundary value problems are obtained and analysed in the context of flow problems involving three layers of fluids of different constant densities in a channel, associated with an impermeable bottom that has a small undulation. The top surface of the channel is either bounded by a rigid lid or free to the atmosphere. The fluid in each layer is assumed to be inviscid and incompressible, and the flow is irrotational and two-dimensional. Only waves that are stationary with respect to the bottom profile are considered in this paper. The effect of surface tension is neglected. In the process of obtaining solutions for both the problems, regular perturbation analysis along with a Fourier transform technique is employed to derive the first-order corrections of some important physical quantities. Two types of bottom topography, such as concave and convex, are considered to derive the profiles of the interfaces. We observe that the profiles are oscillatory in nature, representing waves of variable amplitude with distinct wave numbers propagating downstream and with no wave upstream. The observations are presented in tabular and graphical forms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work deals with an experimental study of the breakup characteristics of liquids with different surface tension and viscosity from a hollow cone hydraulic injector nozzle induced by pressure-swirl. The experiments were conducted at Reynolds numbers Re-p=9500-23,000. The surface tension and viscosity of the surrogate fuels were altered from 72 to 30 mN/m and 1.1 to 1.6 mN s/m(2), respectively. High speed photography and Phase Doppler Particle Anemometry were utilized to study the atomization process. Velocity and drop size measurements of the spray using PDPA in both axial and radial directions indicate a dependency on surface tension. However, these effects are dominant only at low Reynolds numbers and are negligible at high Reynolds number. Downstream of the nozzle, coalescence of droplets due to collision was also found to be significant and the diameters were compared for different liquids. For viscous fluids up to 1.6 cP, the independent effects of viscosity and injection pressure are studied. In general, the spray cone angle increases with increase in pressure. At high pressures, an increase in viscosity leads to higher drop sizes following primary and secondary breakup compared to water. This study will extend our understanding of surrogate fuel film breakup and highlight the importance of long and short wavelength instabilities. (C) 2013 Elsevier Ltd. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of high molecular weight esters such as bis (2-ethylhexyl) sebacate is of significance for its use as a lubricant. This ester is synthesized by the transesterification of dimethyl sebacate with 2-ethylhexanol. Therefore, the solubilities of bis (2-ethylhexyl) sebacate and dimethyl sebacate were determined at 308-328 K at pressures of 10-18 MPa in supercritical carbon dioxide. The solubility of dimethyl sebacate was always higher than bis (2-ethylhexyl) sebacate at a given temperature and pressure. The Mendez-Teja model was used to verify the self-consistency of data. Further, a new semi-empirical model with three parameters was developed using the solution theory coupled with Wilson activity coefficient. This model was used to correlate the experimental data of this work and solubilities of many high molecular weight esters reported in the literature. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A divergence-free velocity field is usually sought in numerical simulations of incompressible fluids. We show that the particle methods that compute a divergence-free velocity field to achieve incompressibility suffer from a volume conservation issue when a finite time-step position update scheme is used. Further, we propose a deformation gradient based approach to arrive at a velocity field that reduces the volume conservation issues in free surface flows and maintains density uniformity in internal flows while retaining the simplicity of first order time updates. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments conducted in channels/tubes with height/diameter less than 1 mm with soft walls made of polymer gels show that the transition Reynolds number could be significantly lower than the corresponding value of 1200 for a rigid channel or 2100 for a rigid tube. Experiments conducted with very viscous fluids show that there could be an instability even at zero Reynolds number provided the surface is sufficiently soft. Linear stability studies show that the transition Reynolds number is linearly proportional to the wall shear modulus in the low Reynolds number limit, and it increases as the 1/2 and 3/4 power of the shear modulus for the `inviscid' and `wall mode' instabilities at high Reynolds number. While the inviscid instability is similar to that in the flow in a rigid channel, the mechanisms of the viscous and wall mode instabilities are qualitatively different. These involve the transfer of energy from the mean flow to the fluctuations due to the shear work done at the interface. The experimental results for the viscous instability mechanism are in quantitative agreement with theoretical predictions. At high Reynolds number, the instability mechanism has characteristics similar to the wall mode instability. The experimental transition Reynolds number is smaller, by a factor of about 10, than the theoretical prediction for the parabolic flow through rigid tubes and channels. However, if the modification in the tube shape due to the pressure gradient, and the consequent modification in the velocity profile and pressure gradient, are incorporated, there is quantitative agreement between theoretical predictions and experimental results. The transition has important practical consequences, since there is a significant enhancement of mixing after transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starting with a micropolar formulation, known to account for nonlocal microstructural effects at the continuum level, a generalized Langevin equation (GLE) for a particle, describing the predominant motion of a localized region through a single displacement degree of freedom, is derived. The GLE features a memory-dependent multiplicative or internal noise, which appears upon recognizing that the microrotation variables possess randomness owing to an uncertainty principle. Unlike its classical version, the present GLE qualitatively reproduces the experimentally measured fluctuations in the steady-state mean square displacement of scattering centers in a polyvinyl alcohol slab. The origin of the fluctuations is traced to nonlocal spatial interactions within the continuum, a phenomenon that is ubiquitous across a broad class of response regimes in solids and fluids. This renders the proposed GLE a potentially useful model in such cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an analysis of an organic Rankine cycle (ORC) with dry cooling system aided by an earth-coupled passive cooling system. Several organic fluids were considered as working fluids in the ORC in the temperature range of 125-200 degrees C. An earth-air-heat-exchanger (EMU) is studied for a location in the United States (Las Vegas) and another in India (New Delhi), to pre cool the ambient air before entering an air-cooled condenser (ACC). It was observed that the efficiency of the system improved by 1-3% for the system located in Las Vegas and fluctuations associated with temperature variations of the ambient air were also reduced when the EAHE system was used. A ground-coupled heat pump (GCHP) is also studied for these locations where cooling water is pre cooled in an underground buried pipe before entering a condenser heat exchanger in a closed loop. The area of the buried pipe and the condenser size are calculated per kW of power generation for various working fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Branched Chain Amino Acids (BCAAs) are related to different aspects of diseases like pathogenesis, diagnosis and even prognosis. While in some diseases, levels of all the BCAAs are perturbed; in some cases, perturbation occurs in one or two while the rest remain unaltered. In case of ischemic heart disease, there is an enhanced level of plasma leucine and isoleucine but valine level remains unaltered. In `Hypervalinemia', valine is elevated in serum and urine, but not leucine and isoleucine. Therefore, identification of these metabolites and profiling of individual BCAA in a quantitative manner in body-fluid like blood plasma/serum have long been in demand. H-1 NMR resonances of the BCAAs overlap with each other which complicates quantification of individual BCAAs. Further, the situation is limited by the overlap of broad resonances of lipoprotein with the resonances of BCAAs. The widely used commercially available kits cannot differentially estimate the BCAAs. Here, we have achieved proper identification and characterization of these BCAAs in serum in a quantitative manner employing a Nuclear Magnetic Resonance-based technique namely T-2-edited Correlation Spectroscopy (COSY). This approach can easily be extended to other body fluids like bile, follicular fluids, saliva, etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a detailed thermodynamic performance analysis of a transcritical condensing (TC) cycle is performed with pure CO2 and a blend of 48.5 % propane with 51.5 % CO2 as working fluids. A realistic thermodynamic model is used incorporating irreversibilities in turbo-machineries and heat exchangers. The Key finding is that the addition of propane elevates the heat rejection temperature, but does not impair any of the performance indicators. Such a fluid may be useful for power generation in concentrated solar power applications by using which a hike of up to 2 % can be realized in the thermal efficiency of a power plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the onset of magnetoconvection between two infinite horizontal planes subject to a vertical magnetic field aligned with background rotation. In order to gain insight into the convection taking place in the Earth's tangent cylinder, we target regimes of asymptotically strong rotation. The critical Rayleigh number Ra-c and critical wavenumber a(c) are computed numerically by solving the linear stability problem in a systematic way, with either stress-free or no-slip kinematic boundary conditions. A parametric study is conducted, varying the Ekman number E (ratio of viscous to Coriolis forces) and the Elsasser number. (ratio of the Lorentz force to the Coriolis force). E is varied from 10(-9) to 10(-2) and. from 10(-3) to 1. For a wide range of thermal and magnetic Prandtl numbers, our results verify and confirm previous experimental and theoretical results showing the existence of two distinct unstable modes at low values of E-one being controlled by the magnetic field, the other being controlled by viscosity (often called the viscous mode). It is shown that oscillatory onset does not occur in the range of parameters we are interested in. Asymptotic scalings for the onset of these modes are numerically confirmed and their domain of validity is precisely quantified. We show that with no-slip boundary conditions, the asymptotic behavior is reached for E < 10(-6) and establish a map in the (E, Lambda) plane. We distinguish regions where convection sets in either through the magnetic mode or through the viscous mode. Our analysis gives the regime in which the transition between magnetic and viscous modes may be observed. We also show that within the asymptotic regime, the role played by the kinematic boundary conditions is minimal. (C) 2015 AIP Publishing LLC.