342 resultados para Maiolica formation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria use a number of small basic proteins for organization and compaction of their genomes. By their interaction with DNA, these nucleoid-associated proteins (NAPs) also influence gene expression. Rv3852, a NAP of Mycobacterium tuberculosis, is conserved among the pathogenic and slow-growing species of mycobacteria. Here, we show that the protein predominantly localizes in the cell membrane and that the carboxy-terminal region with the propensity to form a transmembrane helix is necessary for its membrane localization. The protein is involved in genome organization, and its ectopic expression in Mycobacterium smegmatis resulted in altered nucleoid morphology, defects in biofilm formation, sliding motility, and change in apolar lipid profile. We demonstrate its crucial role in regulating the expression of KasA, KasB, and GroEL1 proteins, which are in turn involved in controlling the surface phenotypes in mycobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report for the first time a simple thermal oxidation strategy for the large area synthesis of Ge/GeO2 nanoholes from Ge and studied the luminescence of Ge/GeO2 and hole formation mechanism through phase and luminescence mapping. Photoluminescence mapping reveals that the emission in the visible range is only from the hole region, which provokes the necessity of the nanoholes. Such materials can also be used to convert ultraviolet to visible radiation for detection by conventional phototubes and to coat blue or ultraviolet diodes to obtain white light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly stable, branched gold nanoworms are formed spontaneously in an acetamide-based room temperature molten solvent without any additional external stabilizing or aggregating agent. The nanoworms can be anchored onto solid substrates such as indium tin oxide (ITO) without any change in morphology. The anchored nanoworms are explored as substrates for surface enhanced Raman scattering (SERS) studies using non-fluorescent 4-mercaptobenzoic acid (4-MBA) and fluorescent rhodamine 6G (R6G) as probe molecules. The anchored nanostructured particles respond to near IR (1064 nm) as well as visible (785, 632.8 and 514 nm) excitation lasers and yield good surface enhancement in Raman signals. Enhancement factors of the order 10(6)-10(7) are determined for the analytes using a 1064 nm excitation source. Minimum detection limits based on adsorption from ethanolic solutions of 1028 M 4-MBA and aqueous solutions of 1027 M R6G are achieved. Experimental Raman frequencies and frequencies estimated by DFT calculations are in fairly good agreement. SERS imaging of the nanostructures suggests that the substrates comprising of three dimensional, highly interlinked particles are more suited than particles fused in one dimension. The high SERS activity of the branched nanoworms may be attributed to both electromagnetic and charge transfer effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solid phase formed by a binary mixture of oppositely charged colloidal particles can be either substitutionally ordered or substitutionally disordered depending on the nature and strength of interactions among the particles. In this work, we use Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique to map out the favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase. The inter-particle interactions are modeled using the hard core Yukawa potential but the method can be easily extended to other systems of interest. The study obtains a map of interactions depicting regions indicating the type of the crystalline aggregate that forms upon phase transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermodynamic properties of Ca7V4O17 are measured for the first time using a solid-state electrochemical cell incorporating single crystal of CaF2 as the electrolyte over the temperature range from (900 to 1175) K. An equimolar mixture of CaO and CaF2 is used as the reference electrode and a mixture of Ca3V2O8, Ca7V4O17 and CaF2 as the measuring electrode. Both the electrodes are placed under flowing oxygen gas at ambient pressure. The standard Gibbs energy change for the reaction: 2Ca(3)V(2)O(8) + CaO -> Ca7V4O17; which is related to the chemical potential of CaO in the two-phase region (Ca3V2O8 + Ca7V4O17) of the pseudo-binary system CaO + V2O5, is obtained from the electromotive force of the cell as: Delta(r)G(o) +/- 127/(J . mol(-1)) = Delta mu(CaO) = -11453 + 8.273(T/K). The derived standard enthalpy of formation of Ca7V4O17 from elements in their normal standard states is ( 8208.97 +/- 8) kJ . mol (1) and its standard entropy is (560.05 +/- 7.5) J . K (1) . mol (1), both at T = 298.15 K. The results indicate that Ca7V4O17 decomposes into Ca3V2O8 and CaO at T = (1384 +/- 3) K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the process of bound state formation in a D-brane collision. We consider two mechanisms for bound state formation. The first, operative at weak coupling in the worldvolume gauge theory, is pair creation of W-bosons. The second, operative at strong coupling, corresponds to formation of a large black hole in the dual supergravity. These two processes agree qualitatively at intermediate coupling, in accord with the correspondence principle of Horowitz and Polchinski. We show that the size of the bound state and time scale for formation of a bound state agree at the correspondence point. The time scale involves matching a parametric resonance in the gauge theory to a quasinormal mode in supergravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formation of a 2,3-dihydro-4H-pyran containing 14-membered macrocycle by sequential olefin cross metathesis and a highly regiospecific hetero Diels-Alder reaction was observed in the reaction of a hydroxydienone derived from tartaric acid with Grubbs' second generation catalyst. It was found that the free alcohol in the hydroxyenone led to the macrocycle formation, while protection of the hydroxy group formed the ring closing metathesis product. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of steroid dimers (bile acid derivatives) linked through ester functionalities were synthesized, which gelled various aromatic solvents. The organogels formed by the three dimeric ester molecules showed birefringent textures and fibrous nature by polarizing optical microscopy and scanning electron microscopy, respectively. A detailed rheological study was performed to estimate the mechanical strengths of two sets of organogels. In these systems, the storage modulus varied in the range of 0.8-3.5 X 10(4) at 1% w/v of the organogelators. The exponents of scaling of the storage modulus and yield stress of the two systems agreed well with those expected for viscoelastic soft colloidal gels with fibrillar flocs. The nanofibers in the organogel were utilized to engineer gold nanoparticles of different sizes and shapes and generate new gel-nanoparticle hybrid materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the collapse of a fuzzy sphere, that is a spherical membrane built out of D0-branes, in the Banks-Fischler-Shenker-Susskind model. At weak coupling, as the sphere shrinks, open strings are produced. If the initial radius is large then open string production is not important and the sphere behaves classically. At intermediate initial radius the backreaction from open string production is important but the fuzzy sphere retains its identity. At small initial radius the sphere collapses to form a black hole. The crossover between the later two regimes is smooth and occurs at the correspondence point of Horowitz and Polchinski.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A binary mixture of oppositely charged colloidal particles can self-assemble into either a substitutionally ordered or substitutionally disordered crystalline phase depending on the nature and strength of interactions among the particles. An earlier study had mapped out favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase using Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique. In this paper, those studies are extended to determine the effect of fluid phase composition on formation of substitutionally ordered solid phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytological architecture of the synaptonemal complex (SC), a meiosis-specific proteinaceous structure, is evolutionarily conserved among eukaryotes. However, little is known about the biochemical properties of SC components or the mechanisms underlying their roles in meiotic chromosome synapsis and recombination. Functional analysis of Saccharomyces cerevisiae Hop1, a key structural component of SC, has begun to reveal important insights into its function in interhomolog recombination. Previously, we showed that Hop1 is a structure-specific DNA-binding protein, exhibits higher binding affinity for the Holliday junction, and induces structural distortion at the core of the junction. Furthermore, Hop1 promotes DNA condensation and intra- and intermolecular synapsis between duplex DNA molecules. Here, we show that Hop1 possesses a modular domain organization, consisting of an intrinsically disordered N-terminal domain and a protease-resistant C-terminal domain (Hop1CTD). Furthermore, we found that Hop1CTD exhibits strong homotypic as well as heterotypic protein protein interactions, and its biochemical activities were similar to those of the full-length Hop1 protein. However, Hop1CTD failed to complement the meiotic recombination defects of the Delta hop1 strain, indicating that both N- and C-terminal domains of Hop1 are essential for meiosis and spore formation. Altogether, our findings reveal novel insights into the structure-function relationships of Hop1 and help to further our understanding of its role in meiotic chromosome synapsis and recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Networks such as organizational network of a global company play an important role in a variety of knowledge management and information diffusion tasks. The nodes in these networks correspond to individuals who are self-interested. The topology of these networks often plays a crucial role in deciding the ease and speed with which certain tasks can be accomplished using these networks. Consequently, growing a stable network having a certain topology is of interest. Motivated by this, we study the following important problem: given a certain desired network topology, under what conditions would best response (link addition/deletion) strategies played by self-interested agents lead to formation of a pairwise stable network with only that topology. We study this interesting reverse engineering problem by proposing a natural model of recursive network formation. In this model, nodes enter the network sequentially and the utility of a node captures principal determinants of network formation, namely (1) benefits from immediate neighbors, (2) costs of maintaining links with immediate neighbors, (3) benefits from indirect neighbors, (4) bridging benefits, and (5) network entry fee. Based on this model, we analyze relevant network topologies such as star graph, complete graph, bipartite Turan graph, and multiple stars with interconnected centers, and derive a set of sufficient conditions under which these topologies emerge as pairwise stable networks. We also study the social welfare properties of the above topologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common valencies associated with K and O atoms are 1+ and 2-. As a result, one expects K2O to be the oxide of potassium which is the most stable with respect to its constituents. Calculating the formation energy within electronic structure calculations using hybrid functionals, one finds that K2O2 has the largest formation energy, implying the largest stability of this oxide of potassium with respect to its constituents. This is traced to the presence of oxygen dimers in the K2O2 structure which interact strongly resulting in a larger formation energy compared to the more ionic K2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several chemical and space industries, small bubbles are desired for efficient interaction between the liquid and gas phases. In the present study, we show that non-uniform electric field with appropriate electrode configurations can reduce the volume of the bubbles forming at submerged needles by up to three orders of magnitude. We show that localized high electric stresses at the base of the bubbles result in slipping of the contact line on the inner surface of the needle and subsequent bubble formation occurs with contact line inside the needle. We also show that for bubble formation in the presence of highly non-uniform electric field, due to high detachment frequency, the bubbles go through multiple coalescences and thus increase the apparent volume of the detached bubbles. (C) 2013 AIP Publishing LLC.