507 resultados para Magnetic levitation vehicles
Resumo:
A systematic study on the variation of Mössbauer hyperfine parameters with grain size in nanocrystalline zinc ferrite is lacking. In the present study, nanocrystalline ZnFe2O4 ferrites with different grain sizes were prepared by ball-milling technique and characterised by X-ray, EDAX, magnetisation and Mössbauer studies. The grain size decreases with increasing milling time and lattice parameter is found to be slightly higher than the bulk value. Magnetisation at room temperature (RT) and at 77 K could not be saturated with a magnetic field of 7 kOe and the observed magnetisation at these temperatures can be explained on the basis of deviation of cation distribution from normal spinel structure. The Mössbauer spectra were recorded at different temperatures between RT and 16 K. The values of quadrupole splitting at RT are higher for the milled samples indicating the disordering of ZnFe2O4 on milling. The strength of the magnetic hyperfine interactions increases with grain size reduction and this can be explained on the basis of the distribution of Fe3+ ions at both tetrahedral and octahedral sites.
Resumo:
In the framework of a project aimed at developing a reliable hydrogen generator for mobile polymer electrolyte fuel cells (PEFCs), particular emphasis has been addressed to the analysis of catalysts able to assure high activity and stability in transient operations (frequent start-up and shut-down cycles). In this paper, the catalytic performance of 1 at.% Pt/ceria samples prepared by coprecipitation, impregnation and combustion, has been evaluated in the partial oxidation of methane. Methane conversion and hydrogen selectivity of 96 and 99%, respectively, associated with high stability during 100h of reaction under operative conditions (start-up and shut-down cycles), have been obtained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We present an extensive study on magnetic and transport properties of La(0.85)Sr(0.15)CoO(3) single crystals grown by a float zone method to address the issue of phase separation versus spin-glass (SG) behavior. The dc magnetization study reveals a kink in field-cooled magnetization, and the peak in the zero-field-cooling curve shifts to lower temperature at modest dc fields, indicating the SG magnetic phase. The ac susceptibility study exhibits a considerable frequency-dependent peak shift (similar to 4 K) and a time-dependent memory effect below the freezing temperature. In addition, the characteristic time scale tau(0) estimated from the frequency-dependent ac susceptibility measurement is found to be similar to 10(-13) s, which matches well with typical values observed in canonical SG systems. The transport relaxation study evidently demonstrates the time-dependent glassy phenomena. In essence, all our experimental results corroborate the existence of SG behavior in La(0.85)Sr(0.15)CoO(3) single crystals.
Resumo:
After summarizing the relevant observational data, we discuss how a study of flux tube dynamics in the solar convection zone helps us to understand the formation of sunspots. Then we introduce the flux transport dynamo model and assess its success in modelling both the solar cycle and its departures from strictly periodic behaviour.
Resumo:
Recent results and data suggest that high magnetic fields in neutron stars (NS) strongly affect the characteristics (radius, mass) of the star. Such stars are even separated into a class known as magnetars, for which the surface magnetic field is greater than 10(14) G. In this work we discuss the effect of such a high magnetic field on the phase transition of a NS to a quark star (QS). We study the effect of magnetic field on the transition from NS to QS including the magnetic-field effect in the equation of state (EoS). The inclusion of the magnetic field increases the range of baryon number densities for which the flow velocities of the matter in the respective phase are finite. The magnetic field helps in initiation of the conversion process. The velocity of the conversion front, however, decreases due to the presence of the magnetic field, as the presence of the magnetic field reduces the effective pressure (P). The magnetic field of the star is decreased by the conversion process, and the resultant QS has lower magnetic field than the initial NS.
Resumo:
We present a magnetic study of the insulating perovskite LaMn1-xTixO3+delta (0
Resumo:
The surface wave induced magnetic reconnection (SWIMR) model based on Alfven Resonance theory will be discussed briefly both for collisional and collisionless plasmas. It is shown that the spatial scales and time delays associated with Flux Transfer Events and Pulsed Ionospheric Flows, as observed by satellites and SuperDARN radars and the magnetic bubbles, observed at the high latitude boundary of the magnetopause, can be explained by the SWIMR model.
Resumo:
The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.
Resumo:
An analysis is developed to study the unsteady mixed convection flow over a vertical cone rotating in an ambient fluid with a time-dependent angular velocity in the presence of a magnetic field. The coupled nonlinear partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The local skin friction coefficients in the tangential and azimuthal directions and the local Nusselt number increase with the time when the angular velocity of the-cone increases, but the reverse trend is observed for decreasing angular velocity. However, these are not mirror reflection of each other. The magnetic field reduces the skin friction coefficient in the tangential direction and also the Nusselt number, but it increases the skin friction coefficient in the azimuthal direction. The skin friction coefficients and the Nusselt number increase with the buoyancy force.
Resumo:
Hexagonal Dy(0.5)Y(0.5)MnO(3), a multiferroic rare-earth manganite with geometrically frustrated antiferromagnetism, has been investigated with single-crystal neutron diffraction measurements. Below 3.4 K magnetic order is observed on both the Mn (antiferromagnetic) and Dy (ferrimagnetic) sublattices that is identical to that of undiluted hexagonal DyMnO(3) at low temperature. The Mn moments undergo a spin reorientation transition between 3.4 K and 10 K, with antiferromagnetic order of the Mn sublattice persisting up to 70 K; the antiferromagnetic order in this phase is distinct from that observed in undiluted (h) DyMnO(3), yielding a qualitatively new phase diagram not seen in other hexagonal rare-earth manganites. A magnetic field applied parallel to the crystallographic c axis will drive a transition from the antiferromagnetic phase into the low-temperature ferrimagnetic phase with little hysteresis.
Resumo:
A vacuum interrupter utilises magnetic field for effective arc extinction. Based on the type of field, the vacuum interrupters are classified as radial or axial magnetic type of vacuum interrupters. This paper focuses on the axial magnetic field type of vacuum interrupters. The magnitude and distribution of the axial magnetic field is a function of the design of the contact system. It also depends on the orientations of the movable and fixed contact systems with respect to each other. This paper investigates the dependence of arcing and erosion performance of the contact on the magnitude and distribution of this axially oriented magnetic field. The experimental observations are well supported by electromagnetic simulations.
Resumo:
Synthesis and structure of new (Bi, La)(3)MSb(2)O(11) phases (M = Cr, Mn, Fe) are reported in conjunction with their magnetic and photocatalytic properties. XRD refinements reflect that Bi(3)CrSb(2)O(11), Bi(2)LaCrSb(2)O(11), Bi(2)LaMnSb(2)O(11) and Bi(2)LaFeSb(2)O(11) adopt KSbO(3)-type structure (space group, Pn (3) over bar). The structure can be described through three interpenetrating networks where the first is the (M/Sb)O(6) octahedral network and other two are the identical networks having Bi(6)O(4) composition. The magnetic measurements on Bi(2)LaCrSb(2)O(11) and Bi(2)LaMnSb(2)O(11) show paramagnetic behaviour with magnetic moments close to the expected spin only magnetic moments of Cr(+3) and Mn(+3). The UV-Visible diffuse reflectance spectra are broad and indicate that these materials possess a bandgap of similar to 2 eV. The photocatalytic activity of these materials has been investigated by degrading Malachite Green (MG) under exposure to UV light.
Resumo:
Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.
Resumo:
We present the magnetic properties of polycrystalline Dy1−xSrxMnO3 (0.1 ≤ x ≤ 0.4) with an orthorhombic (o) crystal structure. The parent compound, o-DyMnO3, undergoes an incommensurate antiferromagnetic ordering of the Mn spins at 39 K, followed by a spiral order at 18 K. A further antiferromagnetic transition at 5 K marks an ordering of the Dy-sublattice. Doping of divalent Sr ions results in diverse magnetization phenomena. The zero-field cooled (ZFC) and field cooled (FC) magnetization curves display the presence of strongly interacting magnetic sublattices. For x = 0.1 and 0.2, a bifurcation between the ZFC and FC magnetization sets in at around 30 and 32 K, respectively. The ZFC magnetization peaks at about 5 K, indicating antiferromagnetic Dy-couplings similar to the case of o-DyMnO3. For x = 0.3, clear signatures of ferrimagnetism and strong anisotropy are found, including negative magnetization. The compound with x = 0.4 behaves as a spin glass, similar to Dy0.5Sr0.5MnO3.