326 resultados para INSECTICIDE RESIDUE
Resumo:
Thiolases are essential CoA-dependent enzymes in lipid metabolism. In the present study we report the crystal structures of trypanosomal and leishmanial SCP2 (sterol carrier protein, type-2)-thiolases. Trypanosomatidae cause various widespread devastating (sub)-tropical diseases, for which adequate treatment is lacking. The structures reveal the unique geometry of the active site of this poorly characterized subfamily of thiolases. The key catalytic residues of the classical thiolases are two cysteine residues, functioning as a nucleophile and an acid/base respectively. The latter cysteine residue is part of a CxG motif. Interestingly, this cysteine residue is not conserved in SCP2-thiolases. The structural comparisons now show that in SCP2-thiolases the catalytic acid/base is provided by the cysteine residue of the HDCF motif, which is unique for this thiolase subfamily. This HDCF cysteine residue is spatially equivalent to the CxG cysteine residue of classical thiolases. The HDCF cysteine residue is activated for acid/base catalysis by two main chain NH-atoms, instead of two water molecules, as present in the CxG active site. The structural results have been complemented with enzyme activity data, confirming the importance of the HDCF cysteine residue for catalysis. The data obtained suggest that these trypanosomatid SCP2-thiolases are biosynthetic thiolases. These findings provide promise for drug discovery as biosynthetic thiolases catalyse the first step of the sterol biosynthesis pathway that is essential in several of these parasites.
Resumo:
In peptide and protein structures, occurrence of (phi,psi.) angles in the disallowed region of the Ramachandran map almost always suggests local regions of error or poor accuracy. However, very rarely genuine disallowed conformations occur as noted in the current study in proteins of known structure available at ultra-high resolution (<= 1.2 (A) over circle). In the current work, extent of conservation of genuine disallowed conformations in homologous proteins of known structures has been analyzed. From a dataset of 124 protein domain families, with structure of at least one constituent member in each family available at a resolution of 1.2 (A) over circle or better, we have analyzed the conservation of 221 disallowed conformations. It is observed that the disallowed conformation is only moderately conservedin protein domain families. In the gross dataset no particular residue type adopting disallowed conformation elicit high conservation of residue type though there are alignment positions in the dataset with complete conservation of both the residue type and the disallowed conformation. Conserved disallowed conformation in protein domain families play biologically significant role in roughly 50% of the cases. The residues with the disallowed conformation or its flanking residues are often located within or around the functional site of the protein. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The growth of axons is an intricately regulated process involving intracellular signaling cascades and gene transcription. We had previously shown that the stimulus-dependent transcription factor, serum response factor (SRF), plays a critical role in regulating axon growth in the mammalian brain. However, the molecular mechanisms underlying SRF-dependent axon growth remains unknown. Here we report that SRF is phosphorylated and activated by GSK-3 to promote axon outgrowth in mouse hippocampal neurons. GSK-3 binds to and directly phosphorylates SRF on a highly conserved serine residue. This serine phosphorylation is necessary for SRF activity and for its interaction with MKL-family cofactors, MKL1 and MKL2, but not with TCF-family cofactor, ELK-1. Axonal growth deficits caused by GSK-3 inhibition could be rescued by expression of a constitutively active SRF. The SRF target gene and actin-binding protein, vinculin, is sufficient to overcome the axonal growth deficits of SRF-deficient and GSK-3-inhibited neurons. Furthermore, short hairpin RNA-mediated knockdown of vinculin also attenuated axonal growth. Thus, our findings reveal a novel phosphorylation and activation of SRF by GSK-3 that is critical for SRF-dependent axon growth in mammalian central neurons.
Resumo:
Adenylosuccinate lyase (ASL), an enzyme involved in purine biosynthesis, has been recognized as a drug target against microbial infections. In the present study, ASL from Mycobacteriumsmegmatis (MsASL) and Mycobacteriumtuberculosis (MtbASL) were cloned, purified and crystallized. The X-ray crystal structure of MsASL was determined at a resolution of 2.16 angstrom. It is the first report of an apo-ASL structure with a partially ordered active site C3 loop. Diffracting crystals of MtbASL could not be obtained and a model for its structure was derived using MsASL as a template. These structures suggest that His149 and either Lys285 or Ser279 of MsASL are the residues most likely to function as the catalytic acid and base, respectively. Most of the active site residues were found to be conserved, with the exception of Ser148 and Gly319 of MsASL. Ser148 is structurally equivalent to a threonine in most other ASLs. Gly319 is replaced by an arginine residue in most ASLs. The two enzymes were catalytically much less active compared to ASLs from other organisms. Arg319Gly substitution and reduced flexibility of the C3 loop might account for the low catalytic activity of mycobacterial ASLs. The low activity is consistent with the slow growth rate of Mycobacteria and their high GC containing genomes, as well as their dependence on other salvage pathways for the supply of purine nucleotides. Structured digital abstract andby()
Resumo:
Unconstrained gamma(4) amino acid residues derived by homologation of proteinogenic amino acids facilitate helical folding in hybrid (alpha gamma)(n) sequences. The C-12 helical conformation for the decapeptide, Boc-Leu-gamma(4)(R)Val](5)-OMe, is established in crystals by X-ray diffraction. A regular C-12 helix is demonstrated by NMR studies of the 18 residue peptide, Boc-Leu-gamma(4)(AR)Val](9)-OMe, and a designed 16 residue (alpha gamma)(n) peptide, incorporating variable side chains. Unconstrained (alpha gamma)(n) peptides show an unexpectedly high propensity for helical folding in long polypeptide sequences.
Resumo:
In this paper, we extend the characterization of Zx]/(f), where f is an element of Zx] to be a free Z-module to multivariate polynomial rings over any commutative Noetherian ring, A. The characterization allows us to extend the Grobner basis method of computing a k-vector space basis of residue class polynomial rings over a field k (Macaulay-Buchberger Basis Theorem) to rings, i.e. Ax(1), ... , x(n)]/a, where a subset of Ax(1), ... , x(n)] is an ideal. We give some insights into the characterization for two special cases, when A = Z and A = ktheta(1), ... , theta(m)]. As an application of this characterization, we show that the concept of Border bases can be extended to rings when the corresponding residue class ring is a finitely generated, free A-module. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Most of the biological processes are governed through specific protein-ligand interactions. Discerning different components that contribute toward a favorable protein-ligand interaction could contribute significantly toward better understanding protein function, rationalizing drug design and obtaining design principles for protein engineering. The Protein Data Bank (PDB) currently hosts the structure of similar to 68 000 protein-ligand complexes. Although several databases exist that classify proteins according to sequence and structure, a mere handful of them annotate and classify protein-ligand interactions and provide information on different attributes of molecular recognition. In this study, an exhaustive comparison of all the biologically relevant ligand-binding sites (84 846 sites) has been conducted using PocketMatch: a rapid, parallel, in-house algorithm. PocketMatch quantifies the similarity between binding sites based on structural descriptors and residue attributes. A similarity network was constructed using binding sites whose PocketMatch scores exceeded a high similarity threshold (0.80). The binding site similarity network was clustered into discrete sets of similar sites using the Markov clustering (MCL) algorithm. Furthermore, various computational tools have been used to study different attributes of interactions within the individual clusters. The attributes can be roughly divided into (i) binding site characteristics including pocket shape, nature of residues and interaction profiles with different kinds of atomic probes, (ii) atomic contacts consisting of various types of polar, hydrophobic and aromatic contacts along with binding site water molecules that could play crucial roles in protein-ligand interactions and (iii) binding energetics involved in interactions derived from scoring functions developed for docking. For each ligand-binding site in each protein in the PDB, site similarity information, clusters they belong to and description of site attributes are provided as a relational database-protein-ligand interaction clusters (PLIC).
Resumo:
Knowledge of protein-ligand interactions is essential to understand several biological processes and important for applications ranging from understanding protein function to drug discovery and protein engineering. Here, we describe an algorithm for the comparison of three-dimensional ligand-binding sites in protein structures. A previously described algorithm, PocketMatch (version 1.0) is optimised, expanded, and MPI-enabled for parallel execution. PocketMatch (version 2.0) rapidly quantifies binding-site similarity based on structural descriptors such as residue nature and interatomic distances. Atomic-scale alignments may also be obtained from amino acid residue pairings generated. It allows an end-user to compute database-wide, all-to-all comparisons in a matter of hours. The use of our algorithm on a sample dataset, performance-analysis, and annotated source code is also included.
Resumo:
Background: Muscle-specific deficiency of iron-sulfur (Fe-S) cluster scaffold protein (ISCU) leads to myopathy. Results: Cells carrying the myopathy-associated G50E ISCU mutation demonstrate impaired Fe-S cluster biogenesis and mitochondrial dysfunction. Conclusion: Reduced mitochondrial respiration as a result of diminished Fe-S cluster synthesis results in muscle weakness in myopathy patients. Significance: The molecular mechanism behind disease progression should provide invaluable information to combat ISCU myopathy. Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044GC), compound heterozygous patients with severe myopathy have been identified to carry the c.149GA missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.
Resumo:
Conventionally, street entrepreneurs were either seen as a residue from a pre-modern era that is gradually disappearing (modernisation theory), or an endeavour into which marginalised populations are driven out of necessity in the absence of alternative ways of securing a livelihood (structuralist theory). In recent years, however, participa-tioninstreetentrepreneurshiphas beenre-read eitherasa rationaleconomicchoice(neo-liberal theory) or as conducted for cultural reasons (post-modern theory). The aim of this paper is to evaluate critically these competing explanations for participation in street entrepreneurship. To do this, face-to-face interviews were conducted with 871 street entrepreneurs in the Indian city of Bangalore during 2010 concerning their reasons for participation in street entrepreneurship. The finding is that no one explanation suffices. Some 12 % explain their participation in street entrepreneurship as necessity-driven, 15 % as traditional ancestral activity, 56 % as a rational economic choice and 17 % as pursued for social or lifestyle reasons. The outcome is a call to combine these previously rival explanations in order to develop a richer and more nuanced theorisation of the multifarious motives for street entrepreneurship in emerging market economies.
Resumo:
High conservation of glycyl residues in homologous proteins is fairly frequent. It is commonly understood that glycine tends to be highly conserved either because of its unique Ramachandran angles or to avoid steric clash that would arise with a larger side chain. Using a database of aligned 3D structures of homologous proteins we identified conserved Gly in 288 alignment positions from 85 families. Ninety-six of these alignment positions correspond to conserved Gly residue with (phi, ) values allowed for non-glycyl residues. Reasons for this observation were investigated by in-silico mutation of these glycyl residues to Ala. We found in 94% of the cases a short contact exists between the C atom of the introduced Ala with the atoms which are often distant in the primary structure. This suggests the lack of space even for a short side chain thereby explaining high conservation of glycyl residues even when they adopt (phi, ) values allowed for Ala. In 189 alignment positions, the conserved glycyl residues adopt (phi, ) values which are disallowed for Ala. In-silico mutation of these Gly residues to Ala almost always results in steric hindrance involving C atom of Ala as one would expect by comparing Ramachandran maps for Ala and Gly. Rare occurrence of the disallowed glycyl conformations even in ultrahigh resolution protein structures are accompanied by short contacts in the crystal structures and such disallowed conformations are not conserved in the homologues. These observations raise the doubt on the accuracy of such glycyl conformations in proteins.
Resumo:
The allowed and the ``disallowed'' regions in the celebrated Ramachandran map (phi-psi] map) was elegantly deduced by Ramachandran, Ramakrishnan and Sasisekharan even before the protein crystal structures became available. This powerful map was derived based on rigid geometry of the peptide group and later several investigations on protein crystal structures reported the occurrence of a small fraction of the phi-psi] torsion angles in the disallowed region. The question is what factors make these residues adopt disallowed conformations? Is it driven by the necessity to maintain the overall topology or is it associated with function or is it just that the disallowed conformations are extreme limits of the allowed conformations? Today, with the availability of a large number of high resolution crystal structures, we have revisited this problem. Apart from validating some of the earlier findings such as residue propensities, preferred location in the secondary structure, we have explored their spatial neighborhood preferences using the protein structure network PSN] approach developed in our lab. Finally, the structural and functional implications of the disallowed conformations are examined.
Resumo:
Using a dataset of 1164 crystal structures of largely non-homologous proteins defined at a resolution of 1.5 angstrom or better, we have investigated the (phi,psi) preferences of 20 residue types by considering the residues which occur in loops. Propensities of residue types to occur in the loops with (phi,psi) values in the aa region of the Ramachandran map has a poor correlation coefficient of 0.48 to the Chou-Fasman propensities of the residue types to occur in the a-helical segments. However the correlation coefficient between propensities of residues in loops to adopt beta conformations and those in beta-sheet is much higher (0.95). These observations suggest that a-helix formation is well influenced by the local amino acid sequence while intrinsic preference of residue types for beta-sheet plays a major role in the formation of beta-sheet. The main chain polar groups of residues in loops, that can affect the (phi,psi) values, can be involved in intra-molecular hydrogen bonding. Therefore we investigated further by considering subset of residues in loops with low (0 to 2) number of intra-molecular hydrogen bonds per residue involving main chain polar atoms. For this subset, the correlation coefficients between propensities for alpha-helix and alpha(R) region and between beta-sheet and beta-region are 0.26 and 0.64 respectively. This reiterates higher intrinsic tendency of beta-region favouring residues to adopt beta-sheet than alpha(R) region favouring residues to adopt alpha-helical structure.
Resumo:
Folding into compact globular structures, with well-defined modules of secondary structure, appears to be a characteristic of long polypeptide chains, with a specific patterning of coded amino acid residues along the length of sequence. Cooperative hydrogen bond driven secondary structure formation and solvent forces, which contribute favorably to the entropy of folding, by promoting compaction of the polymeric chain, have long been discussed as major determinants of the folding process. First principles design approaches, which use non-coded amino acids, employ an alternative structure directing strategy, by using amino acid residues which exhibit a strong conformational bias for specific regions of the Ramachandran map. This overview of ongoing studies in the authors' laboratory, attempts to explore the use of conformationally restricted amino acid residues in the design of peptides with well-defined secondary structures. Short peptides composed of 20 genetically coded amino acids usually exist in solution as an ensemble of equilibrating conformations. Apolar peptide sequences, which are readily soluble in organic solvents like chloroform and methanol, facilitate formation of structures which are predominately driven by intramolecular hydrogen bond formation. The choice of sequences containing residues with a limited range of conformational choices strongly favors formation of local turn structures, stabilized by short range intramolecular hydrogen bonds. Two residue beta-turns can nucleate either helical or hairpin folding, depending on the precise conformation of the turn segment Restriction of the conformational space available to amino acid residues is easily achieved by introduction of an additional alkyl group at the C alpha carbon atom or by side chain backbone cyclization, as in proline. Studies of synthetic sequences incorporating two prototype residues alpha-aminoisobutyric acid (Aib) and D-proline (DPro) illustrate the utility of the strategy in construction of helices and hairpins. Extensions to the design of conformationally switchable sequences and structurally defined hybrid peptides containing backbone homologated residues are also surveyed.
Resumo:
The significant contribution of naturally occurring disulfide bonds to protein stability has encouraged development of methods to engineer non-native disulfides in proteins. These have yielded mixed results. We summarize applications of the program MODIP for disulfide engineering. The program predicts sites in proteins where disulfides can be stably introduced. The program has also been used as an aid in conformational analysis of naturally occurring disulfides in a-helices, antiparallel and parallel beta-strands. Disulfides in a-helices occur only at N-termini, where the first cysteine residue is the N-cap residue of the helix. The disulfide occurs as a CXXC motif and can possess redox activity. In antiparallel beta-strands, disulfides occur exclusively at non-hydrogen bonded (NHB) registered pairs of antiparallel beta-sheets with only 1 known natural example occurring at a hydrogen bonded (HB) registered pair. Conformational analysis suggests that disulfides between HB residue pairs are under torsional strain. A similar analysis to characterize disulfides in parallel beta-strands was carried out. We observed that only 9 instances of cross-strand disulfides exist in a non-redundant dataset. Stereochemical analysis shows that while tbe chi(square) angles are similar to those of other disulfides, the chi(1) and chi(2) angles show more variation and that one of tbe strands is generally an edge strand.