276 resultados para Hydrostatic pressure
Resumo:
The Nilgiri Block, southern India is an exhumed lower crust formed through arc magmatic processes in the Neoarchean. The main lithologies in this terrane include charnockites, gneisses, volcanic tuff, metasediments, banded iron formation and mafic-ultramafic bodies. Mafic-ultramafic rocks are present towards the northern and central part of the Nilgiri Block. We examine the evolution of these mafic granulites/metagabbros by phase diagram modeling and U-Pb sensitive high resolution ion microprobe (SHRIMP) dating. They consist of a garnet-clinopyroxene-plagioclase-hornblende-ilmenite +/- orthopyroxene +/- rutile assemblage. Garnet and clinopyroxene form major constituents with labradorite and orthopyroxene as the main mineral inclusions. Labradorite, identified using Raman analysis, shows typical peaks at 508 cm(-1), 479 cm(-1), 287 cm(-1) and 177 cm(-1). It is stable along with orthopyroxene towards the low-pressure high-temperature region of the granulite fades (M1 stage). Subsequently, orthopyroxene reacted with plagioclase to form the peak garnet + clinopyroxene + rutile assemblage (M2 stage). The final stage is represented by amphibolite facies-hornblende and plagioclase-rim around the garnet-clinopyroxene assemblage (M3 stage). Phase diagram modeling shows that these mafic granulites followed an anticlockwise P-T-t path during their evolution. The initial high-temperature metamorphism (M1 stage) was at 850-900 degrees C and similar to 9 kbar followed by high-pressure granulite fades metamorphism (M2 stage) at 850-900 degrees C and 14-15 kbar. U-Pb isotope studies of zircons using SHRIMP revealed late Neoarchean to early paleoproterozoic ages of crystallization and metamorphism respectively. The age data shows that these mafic granulites have undergone arc magmatism at ca. 25392 +/- 3 Ma and high-temperature, high-pressure metamorphism at ca. 2458.9 +/- 8.6 Ma. Thus our results suggests a late Neoarchean arc magmatism followed by early paleoproterozoic high-temperature, high-pressure granulite facies metamorphism due to the crustal thickening and suturing of the Nilgiri Block onto the Dharwar Craton. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The occurrence of high-pressure mafic-ultramafic bodies within major shear zones is one of the indicators of paleo-subduction. In mafic granulites of the Andriamena complex (north-eastern Madagascar) we document unusual textures including garnet-clinopyroxene-quartz coronas that formed after the breakdown of orthopyroxene-plagioclase-ilmenite. Textural evidence and isochemical phase diagram calculations in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2 system indicate a pressure-temperature (P-T) evolution from an isothermal (780 degrees C) pressure up to c. 24 kbar to decompression and cooling. Such a P-T trajectory is typically attained in a subduction zone setting where a gabbroic/ultramafic complex is subducted and later exhumed to the present crustal level during oceanic closure and final continental collision. The present results suggest that the presence of such deeply subducted rocks of the Andriamena complex is related to formation of the Betsimisaraka suture. LA-ICPMS U-Pb zircon dating of pelitic gneisses from the Betsimisaraka suture yields low Th/U ratios and protolith ages ranging from 2535 to 2625 Ma. A granitic gneiss from the Alaotra complex yields a zircon crystallization age of ca. 818 Ma and Th/U ratios vary from 1.08 to 2.09. K-Ar dating of muscovite and biotite from biotite-kyanite-sillimanite gneiss and garnet-biotite gneiss yields age of 486 +/- 9 Ma and 459 +/- 9 Ma respectively. We have estimated regional crustal thicknesses in NE Madagascar using a flexural inversion technique, which indicates the presence of an anomalously thick crust (c. 43 km) beneath the Antananarivo block. This result is consistent with the present concept that subduction beneath the Antananarivo block resulted in a more competent and thicker crust. The textural data, thermodynamic model, and geophysical evidence together provide a new insight to the subduction history, crustal thickening and evolution of the high-pressure Andriamena complex and its link to the terminal formation of the Betsimisaraka suture in north-eastern Madagascar. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The variation in the electrical resistivity of the chalcogenide glasses Ge15Te85-x has been studied as a function of high pressure for pressures up to 8.5GPa. All the samples studied undergo a semi-conductor to metallic transition in a continuous manner at pressures between 1.5-2.5GPa. The transition pressure at which the samples turn metallic increases with increase in percentage of Indium. This increase is a direct consequence of the increase in network rigidity with the addition of Indium. At a constant pressure of 0.5GPa, the normalized resistivity shows some signature of the existence of the intermediate phase. Samples recovered after a pressure cycle remain amorphous suggesting that the semi-conductor to metallic transition arises from a reduction of the band gap due to pressure or the movement of the Fermi level into the conduction or valence band.
Resumo:
In the recent past, many studies have been carried out on the determination of coefficient of consolidation (c(v)) from the time (t)-deformation (d) data obtained from conventional consolidation tests. Several researchers have also proposed different curve fitting procedures for determining cv from the t-d data. It is anticipated that the cv values obtained from the t-d data may be influenced by initial and secondary compressions. Nevertheless, the pore water pressure data measured during the consolidation process will be independent of initial and secondary compressions. In this study, the conventional Asaoka (1978) method is extended to evaluate cv and end-of-primary (EOP) consolidation from the pore water pressure data measured from laboratory experiments. Laboratory experiments were carried out on the modified one-dimensional consolidation apparatus on different remoulded clay samples measuring pore water pressure during the consolidation process. The cv and EOP computed from the proposed approach have been compared with the results of the t-d data and found to be in good agreement.
Resumo:
In recent years, a low pressure transition around P similar to 3 GPa exhibited by the A(2)B(3)-type 3D topological insulators is attributed to an electronic topological transition (ETT) for which there is no direct evidence either from theory or experiments. We address this phase transition and other transitions at higher pressure in bismuth selenide (Bi2Se3) using Raman spectroscopy at pressure up to 26.2 GPa. We see clear Raman signatures of an isostructural phase transition at P similar to 2.4 GPa followed by structural transitions at similar to 10 GPa and 16 GPa. First-principles calculations reveal anomalously sharp changes in the structural parameters like the internal angle of the rhombohedral unit cell with a minimum in the c/a ratio near P similar to 3 GPa. While our calculations reveal the associated anomalies in vibrational frequencies and electronic bandgap, the calculated Z(2) invariant and Dirac conical surface electronic structure remain unchanged, showing that there is no change in the electronic topology at the lowest pressure transition.
Resumo:
The effect of applied pressure on reactive hot pressing (RHP) of zirconium (Zr):graphite (C) in molar ratios of 1:0.5, 1:0.67, 1:0.8, and 1:1 was studied at 1200 degrees C for 60 min. The relative density achievable increased with increasing pressure and ranged from 99% at 4 MPa for ZrC0.5 to 93% for stoichiometric ZrC at 100 MPa. The diminishing influence of pressure on the final density with increasing stoichiometry is attributed to two causes: the decreasing initial volume fraction of the plastically deforming Zr metal which leads to the earlier formation of a contiguous, stress shielding carbide skeleton and the larger molar volume shrinkage during reaction which leads to pore formation in the final stages. A numerical model of the creep densification of a dynamically evolving microstructure predicts densities that are consistent with observations and confirm that the availability of a soft metal is primarily responsible for the achievement of such elevated densification during RHP. The ability to densify nonstoichiometric compositions like ZrC0.5 at pressures as low as 4 MPa offers an alternate route to fabricating dense nonstoichiometric carbides.