475 resultados para Ferromagnetic shape memory alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of spurious patterns in neural associative memory models is discussed, Some suggestions to solve this problem from the literature are reviewed and their inadequacies are pointed out, A solution based on the notion of neural self-interaction with a suitably chosen magnitude is presented for the Hebb learning rule. For an optimal learning rule based on linear programming, asymmetric dilution of synaptic connections is presented as another solution to the problem of spurious patterns, With varying percentages of asymmetric dilution it is demonstrated numerically that this optimal learning rule leads to near total suppression of spurious patterns. For practical usage of neural associative memory networks a combination of the two solutions with the optimal learning rule is recommended to be the best proposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a dynamic materials model, processing and instability maps have been developed for near-alpha titanium alloy 685 in the temperature range 775-1025 degrees C and strain-rate range of 0.001-10 s(-1) to optimise its hot workability. The alloy's beta-transus temperature lies at about 1020 degrees C. The material undergoes superplasticity with a peak efficiency of 80% at 975 degrees C and 0.001 s(-1), which are the optimum parameters for alpha-beta working. The occurrence of superplasticity is attributed to two-phase microduplex structure, higher strain-rate sensitivity, low flow stress and sigmoidal variation between log flow stress and log strain rate. The material also exhibits how localisation due to adiabatic shear-band formation up to its beta-transus temperature with strain rates greater than 0.02 s(-1) and thus cracking along these regions. (C) 1997 Published by Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous structures are widely used for many applications and hence there have been several efforts directed towards their synthesis. While several template-based and template-less approaches are available for monometallic systems, there is no general method for the synthesis of nanoporous multicomponent systems/alloys. We present a general template-less strategy for the synthesis of nanoporous alloy aggregates by controlled aggregation of nanoparticles in the solution phase with excellent control over morphology and composition as illustrated using AuPt, AuPd, PdPt and PtRu systems as examples. The Pt-based nanoporous clusters exhibit excellent activity for methanol oxidation with good long-term stability and CO tolerance. We show that the method can be extended to produce ternary catalysts and hence we expect our method to be widely used for the synthesis of multifunctional nanoporous structures for catalysis, sensor and drug-delivery applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the influence of the ferromagnetic layer on the magnetic and transport properties of YBa2Cu3O7-delta in YBa2Cu3O7-delta (YBCO)/La0.7Sr0.3MnO3 (LSMO) bilayers. The temperature dependent dc magnetization study reveals the presence of magnetic anisotropy in YBCO/LSMO bilayer as compared to the pure YBCO layer. The ac susceptibility study on YBCO/LSMO bilayers reveals stronger pinning and the temperature dependent critical current is found to be less prone to temperature. Besides, the current (I) dependent electrical transport studies on YBCO/LSMO exhibit a significant reduction in the superconducting T-c with increase in I and it follows I-2/3 dependence in accord with the pair breaking effect. The higher reduction of superconducting T-c in YBCO/LSMO is believed to be due to the enhanced pair-breaking induced by the spin polarized carriers being injected into the superconductor. (C) 2011 American Institute of Physics. doi: 10.1063/1.3560029]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stabilization of nanocrystalline grain sizes by second phase particles can facilitate superplasticity at high strain rates and/or low temperatures. A metastable single phase nano-Ni-P alloy prepared by electrodeposition, with a grain size of similar to 6 nm, transforms to a nanoduplex structure at T> 673 K, with similar to 4 vol.% Ni3P particles at triple junctions and within Ni grains. The nanoduplex microstructure is reasonably stable up to 777 K, and the growth of Ni grains occurs in a coupled manner with the growth of Ni3P particles such that the ratio of the two mean sizes (Z) is essentially constant. High temperature tests for a grain size of 290 nm reveal superplastic behavior with an optimum elongation to failure of 810% at a strain rate of 7 x 10(-4) s(-1) and a relatively low temperature of 777 K. Superplastic deformation enhances both grain growth and the ratio Z, implying that grain boundary sliding (GBS) significantly influences the microstructural dynamics. Analysis of the deformation processes suggests that superplasticity is associated with GBS controlled by the overcoming of intragranular particles by dislocations, so that deformation is independent of the grain size. The nano-Ni-P alloy exhibits lower ductility than nano-Ni due to concurrent cavitation caused by higher stresses. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unstable flow during hot deformation of an alpha(2) titanium aluminide alloy Ti-24Al-20Nb alloy was analysed using two criteria, one of which was developed by Jonas and the other by Kalyankumar. Workability maps were constructed using the alpha parameter as suggested by Semiatin and Lahoti and instability maps were constructed based on the stability parameter xi(epsilon) as suggested by Kalyankumar. Microstructural study was carried out on deformed specimens to validate the two criteria. The results of the two criteria were compared. The particular case of highly negative alpha values has been discussed in detail and it is shown that these correspond to regions of unstable flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical approach for coupling the temperature and concentration fields using a micro/macro dual scale model for a solidification problem is presented. The dual scale modeling framework is implemented on a hybrid explicit-implicit solidification scheme. The advantage of this model lies in more accurate consideration of microsegregation occurring at micro-scale using a subgrid model. The model is applied to the case of solidification of a Pb-40% Sn alloy in a rectangular cavity. The present simulation results are compared with the corresponding experimental results reported in the literature, showing improvement in macrosegregation predictions. Subsequently, a comparison of macrosegregation prediction between the results of the present method with those of a parameter model is performed, showing similar trends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granular alloys of Cu with FeCo were prepared by the melt-spinning technique. The alloy was characterized by x-ray, transmission electron microscopy, vibrating sample magnetometer, and magnetoresistance measurements. The alloys were heat treated for different temperatures to optimize the magnetoresistance properties. Structural characterization reveals that the FeCo phase initially precipitates out as fcc and later transforms to the bcc structure by martensitic transformation. It is seen that the trend in the magnetoresistance properties is different for the measurements carried out at room temperature and 4.2 K. This has been attributed to the transformation of fine fcc precipitates to the bcc structure during the low temperature measurements. It is seen that the presence of fine particles causes an increase in the field for saturation and is not suitable for applications where moderate field giant magnetoresistance is required. (C) 1999 American Institute of Physics. [S0021-8979(99)08317-6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid solidification techniques can be used to produce the embedded nanoparticles in a desired matrix. The origin and morphology of these small particles and their transformation behaviour are still not fully understood. In this paper, we discuss the issues involved and present some interesting results in Al-Pb-In and Cu-Fe-Si systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A natural velocity field method for shape optimization of reinforced concrete (RC) flexural members has been demonstrated. The possibility of shape optimization by modifying the shape of an initially rectangular section, in addition to variation of breadth and depth along the length, has been explored. Necessary shape changes have been computed using the sequential quadratic programming (SQP) technique. Genetic algorithm (Goldberg and Samtani 1986) has been used to optimize the diameter and number of main reinforcement bars. A limit-state design approach has been adopted for the nonprismatic RC sections. Such relevant issues as formulation of optimization problem, finite-element modeling, and solution procedure have been described. Three design examples-a simply supported beam, a cantilever beam, and a two-span continuous beam, all under uniformly distributed loads-have been optimized. The results show a significant savings (40-56%) in material and cost and also result in aesthetically pleasing structures. This procedure will lead to considerable cost saving, particularly in cases of mass-produced precast members and a heavy cast-in-place member such as a bridge girder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passing a H-2-CH4 mixture over oxide spinels containing two transition elements as in Mg0.8MyMz'Al2O4 (M, M' = Fe, Co or Ni, y + z = 0.2) at 1070 degrees C produces small alloy nanoparticles which enable the formation of carbon nanotubes. Surface area measurements are found to be useful for assessing the yield and quality of the nanotubes. Good-quality single-walled nanotubes (SWNTs) have been obtained in high yields with the FeCo alloy nanoparticles, as evidenced by transmission electron microscope images and surface area measurements. The diameter of the SWNTs is in the 0.8-5 nm range, and the multiwalled nanotubes, found occasionally, possess very few graphite layers. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a general methodology for the synthesis of the external boundary of the workspaces of a planar manipulator with arbitrary topology. Both the desired workspace and the manipulator workspaces are identified by their boundaries and are treated as simple closed polygons. The paper introduces the concept of best match configuration and shows that the corresponding transformation can be obtained by using the concept of shape normalization available in image processing literature. Introduction of the concept of shape in workspace synthesis allows highly accurate synthesis with fewer numbers of design variables. This paper uses a new global property based vector representation for the shape of the workspaces which is computationally efficient because six out of the seven elements of this vector are obtained as a by-product of the shape normalization procedure. The synthesis of workspaces is formulated as an optimization problem where the distance between the shape vector of the desired workspace and that of the workspace of the manipulator at hand are minimized by changing the dimensional parameters of the manipulator. In view of the irregular nature of the error manifold, the statistical optimization procedure of simulated annealing has been used. A number of worked-out examples illustrate the generality and efficiency of the present method. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed Fourier line shape analysis has been performed on three different compositions of the composite matrix of Al-Si-Mg and SiC. The alloy composition in wt% is Al-7%Si, 0.35%Mg, 0.14%Fe and traces of copper and titanium (similar to 0.01%) with SiC varying from 0 to 30wt% in three steps i.e., 0, 10 and 30wt%. The line shift analysis has been performed by considering 111, 200, 220, 311 and 222 reflections after estimating their relative shift. Peak asymmetry analysis has been performed considering neighbouring 111 and 200 reflections and Fourier line shape analysis has been performed after considering the multiple orders 111 and 222, 200 and 400 reflections. Combining all these three analyses it has been found that the deformation stacking faults both intrinsic alpha' and extrinsic alpha " are absent in this alloy system whereas the deformation twin beta has been found to be positive and increases with the increase of SiC concentration. So, like other Al-base alloys this ternary alloy also shows high stacking fault energy, and the addition of SiC introduces deformation twin which increases with its concentration in the deformed lattices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single source network is said to be memory-free if all of the internal nodes (those except the source and the sinks) do not employ memory but merely send linear combinations of the symbols received at their incoming edges on their outgoing edges. In this work, we introduce network-error correction for single source, acyclic, unit-delay, memory-free networks with coherent network coding for multicast. A convolutional code is designed at the source based on the network code in order to correct network- errors that correspond to any of a given set of error patterns, as long as consecutive errors are separated by a certain interval which depends on the convolutional code selected. Bounds on this interval and the field size required for constructing the convolutional code with the required free distance are also obtained. We illustrate the performance of convolutional network error correcting codes (CNECCs) designed for the unit-delay networks using simulations of CNECCs on an example network under a probabilistic error model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methanol-tolerant Pt-Pd alloy catalysts supported on to carbon with varying Pt:Pd atomic ratios of 1:1, 2:1 and 3:1 are prepared by a novel wet-chemical method and characterized using powder XRD, XPS, FESEM, EDAX and TEM techniques. The optimum atomic weight ratio for Pt to Pd in the carbon-supported alloy catalyst as established by linear-sweep voltammetry (LSV) and cell polarization studies is found to be 2:1. A direct methanol fuel cell (DMFC) employing carbon-supported Pt-Pd (2:1) alloy (Pt-Pd/C) catalyst as the cathode catalyst delivers a peak-power density of 115 mW/cm(2) at 70 degrees C as compared to peak-power density of 60 mW/cm(2) obtained with the DMFC employing carbon-supported Pt (Pt/C) catalyst operating under similar conditions. In the literature, DMFCs operating with Pt-TiO2 (2:1)/C and Pt-Au (2:1)/C methanol-tolerant cathodes are reported to exhibit maximum ORR activity among the group of these methanol-tolerant cathodes with varying catalysts compositions. Accordingly, the present study also provides an effective route to design methanol-tolerant-oxygen-reduction catalysts for DMFCs. (C) 2011 The Electrochemical Society. DOI: 10.1149/1.3596542] All rights reserved.