524 resultados para E2 protein -
Resumo:
The epitopic core sequences recognized by three monoclonal antibodies raised to chicken riboflavin carrier protein (RCP) were mapped to the C-terminal tail-end of the protein using the pepscan method A 21-residue synthetic peptide corresponding to residues 200-219 of the protein and comprising the regions corresponding to the antibodies was synthesized. Administration of polyclonal antibodies specific to this peptide led to termination of early pregnancy in mice. Also, active immunization of rats with the peptide-purified protein derivative conjugate inhibited establishment of pregnancy. These results demonstrate the functional importance of the C-terminal 200-219 region of chicken RCP. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
beta protein, a key component of Red-pathway of phage lambda is necessary for its growth and general genetic recombination in recombination-deficient mutants of Escherichia coli. To facilitate studies on structure-function relationships, we overexpressed beta protein and purified it to homogeneity. A chemical cross-linking reagent, glutaraldehyde, was used to stabilize the physical association of beta protein in solution. A 67-kDa band, corresponding to homodimer, was identified after separation by SDS-polyacrylamide gel electrophoresis. Stoichiometric measurements indicated a site-size of 1 monomer of beta protein/5 nucleotide residues. Electrophoretic gel mobility shift assays suggested that beta protein formed stable nucleoprotein complexes with 36-mer, but not with 27- or 17-mer DNA. Interestingly, the interaction of beta protein with DNA and the stability of nucleoprotein complexes was dependent on the presence of MgCl2, and the binding was abolished by 250 mM NaCl. The K-d of beta protein binding to 36-mer DNA was on the order of 1.8 x 10(-6) M. Photochemical cross-linking of native beta protein or its fragments, generated by chymotrypsin, to 36-mer DNA was performed to identify its DNA-binding domain. Characterization of the cross-linked peptide disclosed that amino acids required for DNA-binding specificity resided within a 20-kDa peptide at the N-terminal end. These findings provide a basis for further understanding oi the structure and function of beta protein.
Resumo:
A specific protein exhibiting immunological cross-reactivity with chicken riboflavin carrier protein has been purified to homogeneity from human amniotic fluid by use of ion-exchange and affinity chromatography. The protein is similar to its avian counterpart in terms of molecular size, distribution of 125I-labelled tryptic peptides during finger printing, and preferential binding to riboflavin. Immunologically, they are homologous since most of the monoclonal antibodies raised against the avian protein cross-react with the purified human vitamin carrier.
Resumo:
Monoclonal antibodies (mAbs) to chicken thiamin carrier protein (TCP) have been produced by hybridoma technology to identify the crucial epitopes involved in bioneutralization of the vitamin carrier. The monoclonality of these mAbs (A4C4, F3H6, H8H3, C8C1 and G7H10) was sought to be confirmed by sub-class isotyping; they all belong to IgG1, k type. The epitopes recognized by all the five mAbs are conserved in TCP from the chicken to the rat as assessed by liquid phase RIA and immunoprecipitation of I-125-labelled proteins from pregnant rat serum. Among these mAbs, passive immunization of pregnant rats with the mAb C8C1 only on three consecutive days (day 10, 11 and 12) resulted in embryonic resorption. These results demonstrate the importance of epitopic structure specified by the mAb C8C1 on TCP during pregnancy in rats.
Resumo:
Adult rat Leydig cells in culture synthesize and secrete riboflavin carrier protein (RCP) as demonstrated by [S-35]-methionine incorporation into newly synthesized proteins followed by immunoprecipitation as well as specific radioimmunoassay. LH stimulates the secretion of RCP 4-fold which could be inhibited upto 75% by an aromatase inhibitor. 8-bromo-cyclic AMP and cholera toxin could mimic the LH stimulated secretion of the carrier protein. The extent of stimulation of RCP secretion brought about by exogenous estradiol-17 beta is comparable to that of LH. The antiestrogen tamoxifen, when added along with either LH or estrogen, inhibited the stimulated levels significantly. These results show that the estrogen-inducible riboflavin carrier is secreted by Leydig cells under positive regulation of LH.
Resumo:
In attempts to convert an elongator tRNA to an initiator tRNA, we previously generated a mutant elongator methionine tRNA carrying an anticodon sequence change from CAU to CUA along with the two features important for activity of Escherichia coli initiator tRNA in initiation. This mutant tRNA (Mi:2 tRNA) was active in initiation in vivo but only when aminoacylated with methionine by overproduction of methionyl-tRNA synthetase. Here we show that the Mi:2 tRNA is normally aminoacylated in vivo with lysine and that the tRNA aminoacylated with lysine is a very poor substrate for formylation compared with the same tRNA aminoacylated with methionine. By introducing further changes at base pairs 4:69 and 5:68 in the acceptor stem of the Mi:2 tRNA to those found in the E. coli initiator tRNA, we show that change of the U4:A69 base pair to G4:C69 and overproduction of lysyl-tRNA synthetase and methionyl-tRNA transformylase results in partial formylation of the mutant tRNA and activity of the formyllysyl-tRNAs in initiation of protein synthesis. Thus, the G4:C69 base pair contributes toward formylation of the tRNA and protein synthesis in E. coli can be initiated with formyllysine. We also discuss the implications of these and other results on recognition of tRNAs by E. coli lysyl-tRNA synthetase and on competition in cells among aminoacyl-tRNA synthetases.
Resumo:
p-Hydroxyphenylacetate-3-hydroxylase, an inducible enzyme isolated from the soil bacterium Pseudomonas putida, catalyzes the conversion of p-hydroxyphenylacetate to 3,4-dihydroxyphenylacetate. The enzyme requires two protein components: a flavoprotein and a colorless protein referred to as the coupling protein. The flavoprotein alone in the presence of p-hydroxyphenylacetate and substrate analogs catalyzes the wasteful oxidation of NADH with the stoichiometric generation of H2O2. A 1:1 complex of the flavoprotein and coupling protein is required for stoichiometric product formation. Such complex formation also eliminates the nonproductive NADH oxidase activity of the flavoprotein. A new assay measuring the product formation activity of the enzyme was developed using homoprotocatechuate-2,3-dioxygenase, as monitoring the oxidation of NADH was not sufficient to demonstrate enzyme activity. The coupling protein does not seem to have any redox center in it. Thus, this 2-component flavin hydroxylase resembles the other aromatic hydroxylases in that the only redox chromophore present is FAD.
Resumo:
In the absence of interlogs, building docking models is a time intensive task, involving generation of a large pool of docking decoys followed by refinement and screening to identify near native docking solutions. This limits the researcher interested in building docking methods with the choice of benchmarking only a limited number of protein complexes. We have created a repository called dockYard (http://pallab.serc.iisc.ernet.in/dockYard), that allows modelers interested in protein-protein interaction to access large volume of information on protein dimers and their interlogs, and also download decoys for their work if they are interested in building modeling methods. dockYard currently offers four categories of docking decoys derived from: Bound (native dimer co-crystallized), Unbound (individual subunits are crystallized, as well as the target dimer), Variants (match the previous two categories in at least one subunit with 100% sequence identity), and Interlogs (match the previous categories in at least one subunit with >= 90% or >= 50% sequence identity). The web service offers options for full or selective download based on search parameters. Our portal also serves as a repository to modelers who may want to share their decoy sets with the community.
Resumo:
Molybdenum-cofactor (Moco) biosynthesis is an evolutionarily conserved pathway in almost all kingdoms of life, including humans. Two proteins, MogA and MoeA, catalyze the last step of this pathway in bacteria, whereas a single two-domain protein carries out catalysis in eukaryotes. Here, three crystal structures of the Moco-biosynthesis protein MogA from the two thermophilic organisms Thermus thermophilus (TtMogA; 1.64 angstrom resolution, space group P2(1)) and Aquifex aeolicus (AaMogA; 1.70 angstrom resolution, space group P2(1) and 1.90 angstrom resolution, space group P1) have been determined. The functional roles and the residues involved in oligomerization of the protein molecules have been identified based on a comparative analysis of these structures with those of homologous proteins. Furthermore, functional roles have been proposed for the N- and C-terminal residues. In addition, a possible protein-protein complex of MogA and MoeA has been proposed and the residues involved in protein-protein interactions are discussed. Several invariant water molecules and those present at the subunit interfaces have been identified and their possible structural and/or functional roles are described in brief. In addition, molecular-dynamics and docking studies with several small molecules (including the substrate and the product) have been carried out in order to estimate their binding affinities towards AaMogA and TtMogA. The results obtained are further compared with those obtained for homologous eukaryotic proteins.
Resumo:
NSP3, an acidic nonstructural protein, encoded by gene 7 has been implicated as the key player in the assembly of the 11 viral plus-strand RNAs into the early replication intermediates during rotavirus morphogenesis. To date, the sequence or NSP3 from only three animal rotaviruses (SA11, SA114F, and bovine UK) has been determined and that from a human strain has not been reported. To determine the genetic diversity among gene 7 alleles from group A rotaviruses, the nucleotide sequence of the NSP3 gene from 13 strains belonging to nine different G serotypes, from both humans and animals, has been determined. Based on the amino acid sequence identity as well as phylogenetic analysis, NSP3 from group A rotaviruses falls into three evolutionarily related groups, i.e., the SA11 group, the Wa group, and the S2 group. The SA 11/SA114F gene appears to have a distant ancestral origin from that of the others and codes for a polypeptide of 315 amino acids (aa) in length. NSP3 from all other group A rotaviruses is only 313 aa in length because of a 2-amino-acid deletion near the carboxy-terminus, While the SA114F gene has the longest 3' untranslated region (UTR) of 132 nucleotides, that from other strains suffered deletions of varying lengths at two positions downstream of the translational termination codon. In spite of the divergence of the nucleotide (nt) sequence in the protein coding region, a stretch of about 80 nt in the 3' UTR is highly conserved in the NSP3 gene from all the strains. This conserved sequence in the 3' UTR might play an important role in the regulation of expression of the NSP3 gene. (C) 1995 Academic Press, Inc.
Resumo:
The unfolding of the chicken egg white riboflavin carrier protein by disulfide reduction with dithiothreitol led to aggregation with concomitant loss of ligand binding characteristics and the capacity to interact with six monoclonal antibodies directed against surface-exposed discontinuous epitopes. The reduced protein could, however, bind to a monoclonal antibody recognizing sequential epitope. Under optimal conditions of protein refolding, the vitamin carrier protein regained its folded structure with high efficiency with simultaneous complete restoration of hydrophobic flavin binding site as well as the epitopic conformations exposed at the surface in a manner comparable to its native form.
Resumo:
Molecular understanding of disease processes can be accelerated if all interactions between the host and pathogen are known. The unavailability of experimental methods for large-scale detection of interactions across host and pathogen organisms hinders this process. Here we apply a simple method to predict protein-protein interactions across a host and pathogen organisms. We use homology detection approaches against the protein-protein interaction databases. DIP and iPfam in order to predict interacting proteins in a host-pathogen pair. In the present work, we first applied this approach to the test cases involving the pairs phage T4 - Escherichia coli and phage lambda - E. coli and show that previously known interactions could be recognized using our approach. We further apply this approach to predict interactions between human and three pathogens E. coli, Salmonella enterica typhimurium and Yersinia pestis. We identified several novel interactions involving proteins of host or pathogen that could be thought of as highly relevant to the disease process. Serendipitously, many interactions involve hypothetical proteins of yet unknown function. Hypothetical proteins are predicted from computational analysis of genome sequences with no laboratory analysis on their functions yet available. The predicted interactions involving such proteins could provide hints to their functions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Cyclin dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) has gained attention in the last years following the discovery, in 2005, that recessive mutations cause primary autosomal recessive microcephaly. This disease is seen as an isolated developmental defect of the brain, particularly of the cerebral cortex, and was thus historically also referred to as microcephalia vera. Unraveling the pathomechanisms leading to this human disease is fascinating scientists because it can convey insight into basic mechanisms of physiologic brain development (particularly of cortex formation). It also finds itself in the spotlight because of its implication in trends in mammalian evolution with a massive increase in the size of the cerebral cortex in primates. Here, we provide a timely overview of the current knowledge on the function of CDK5RAP2 and mechanisms that might lead to disease in humans when the function of this protein is disturbed.