285 resultados para CATHODIC CLEAVAGE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONSPECTUS: Transition metals help to stabilize highly strained organic fragments. Metallacycles, especially unsaturated ones, provide much variety in this area. We had a sustained interest in understanding new C-C bond formation reactions affected by binuclear transition metal fragments Cp2M. One such study led to the exploration of the bimetallic C-C cleavage and coupled complexes, where the acetylide ligands bridge two metal atoms. The underlying M-C interaction in these complexes inspired the synthesis of a five-membered cyclocumulene complex, which opened a new phase in organometallic chemistry. The metallacyclocumulene produces a variety of C-C cleavage and coupled products including a radialene complex. Group 4 metallocenes have thus unlocked a fascinating chemistry by stabilizing strained unsaturated C4 organic fragments in the form of five-membered metallacyclocumulenes, metallacyclopentynes, and metallacycloallenes. Over the years, we have carried out a comprehensive theoretical study to understand the unusual stability and reactivity of these metallacycles. The unique (M-C-beta) interaction of the internal carbon atoms with the metal atom is the reason for unusual stability of the metallacycles. We have also shown that there is a definite dependence of the C-C coupling and cleavage reactions on the metal of metallacyclocumulenes. It demonstrates unexpected reaction pathways for these reactions. Based on this understanding, we have predicted and unraveled the stabilization factors of an unusual four-membered metallacycloallene complex. Indeed, our prediction about a four-membered heterometallacycle has led to an interesting bonding situation, which is experimentally realized. This type of M-C bonding is intriguing from a fundamental perspective and has great relevance in synthesizing unusual structures with interesting properties. In this Account, we first give a short prologue of what led to the present study and describe the salient features of the structure and bonding of the metallacyclocumulenes. The unusual reaction pathway of this metallacycle is explored next. Similar features of the metallacyclopentynes and metallacycloallenes are briefly mentioned. Then, we discuss the exploitation of the unique M-C bonding to design some exotic molecules such as a four-membered metallacycloallene complex. Our efforts to build a conceptual framework to understand these metallacycles and to exploit their chemistry continue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First-principles density functional theory has been used to evaluate the shear and cleavage strength in terms of Griffith work and generalized stacking fault energy (GSF) of (001) plane for gamma, gamma' and gamma-gamma' system as a function of distance from the gamma/gamma' interface. Calculation of Griffith work suggests higher cleavage energy for bulk gamma as compared to gamma' while the GSF calculation suggests higher shear strength for bulk gamma' as compared to gamma. It has been found that the shear strength of the cubic plane of the gamma/gamma' interface is marginally lower than those of bulk gamma and gamma' phases. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RAGs (recombination activating genes) are responsible for the generation of antigen receptor diversity through the process of combinatorial joining of different V (variable), D (diversity) and J (joining) gene segments. In addition to its physiological property, wherein RAG functions as a sequence-specific nuclease, it can also act as a structure-specific nuclease leading to genomic instability and cancer. In the present study, we investigate the factors that regulate RAG cleavage on non-B DNA structures. We find that RAG binding and cleavage on heteroduplex DNA is dependent on the length of the double-stranded flanking region. Besides, the immediate flanking double-stranded region regulates RAG activity in a sequence-dependent manner. Interestingly, the cleavage efficiency of RAGs at the heteroduplex region is influenced by the phasing of DNA. Thus, our results suggest that sequence, length and phase positions of the DNA can affect the efficiency of RAG cleavage when it acts as a structure-specific nuclease. These findings provide novel insights on the regulation of the pathological functions of RAGs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes of 2-(2'-pyridyl)-1,10-phenanthroline (pyphen), viz. VO(pyphen)(acac)](ClO4) (1), VO(pyphen)(anacac)](ClO4) (2) and VO(pyphen)(cur)](ClO4) (3), where acac is acetylacetonate (in 1), anacac is anthracenylacetylacetonate (in 2) and cur is curcumin monoanion (in 3) were synthesized, characterized and their photo-induced DNA cleavage activities and photo-cytotoxicities studied. The complexes are 1: 1 electrolytes in DMF. The one-electron paramagnetic complexes show a d-d band near 760 nm in DMF. Complexes 2 and 3 are blue and green emissive, respectively, in DMSO. The complexes exhibit irreversible V-IV/V-III reductive responses near -1.1 V and V-V/V-IV oxidative responses near 0.85 V vs. SCE in DMF-0.1 M TBAP. Complexes 2 and 3 display significant and selective photo-cytotoxicity upon irradiation with visible light giving an IC50 value of about 5 mu M against HeLa and MCF-7 cancer cells; they are significantly less-toxic against normal 3T3 control cells and in the absence of light. Complex 1 was used as a control. Both cytosolic and nuclear localization of the complexes were observed on the basis of fluorescence imaging. The complexes, avid binders to calf thymus (ct) DNA, were found to photocleave supercoiled pUC19 DNA upon irradiation with near-IR light (785 nm) by generating hydroxyl radical (OH) as the reactive oxygen species (ROS). Cell death events noted with HeLa and MCF-7 cell lines likely are attributable to apoptotic pathways involving light-assisted generation of intracellular ROS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of combined additions of Ca and Sb on the microstructure and tensile properties of AZ91D alloy fabricated by squeeze-casting have been investigated. For comparison, the same has also been studied with and without individual additions of Ca and Sb. The results indicate that both individual and combined additions refine the grain size and beta-Mg17Al12 phase, which is more pronounced with combined additions. Besides alpha-Mg and beta-Mg17Al12 phases, a new reticular Al2Ca and rod-shaped Mg3Sb2 phases are formed following individual additions of Ca and Sb in the AZ91D alloy. With combined additions, an additional Ca2Sb phase is formed suppressing Mg3Sb2 phase. Additions of both Ca and Sb increase yield strength (YS) at both ambient and elevated temperatures up to 200 degrees C. However, both ductility and ultimate tensile strength (UTS) decrease first up to 150 degrees C and then increase at 200 degrees C. The increase in YS is attributed to the refinement of grain size, whereas, ductility and UTS are deteriorated by the presence of brittle Al2Ca, Mg3Sb2 and Ca2Sb phases. The best tensile properties are obtained in the AZXY9110 alloy owing to the presence of lesser amount of brittle Al2Ca and Ca2Sb phases resulted from the optimum content of 1.0Ca and 0.3Sb (wt%). The fracture surface of the tensile specimen tested at ambient temperature reveals cleavage failure that changes to quasi-cleavage at 200 degrees C. The squeeze-cast alloys exhibited better tensile properties as compared to that of the gravity-cast alloys nullifying the detrimental effects of Ca and/or Sb additions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes of polypyridyl and curcumin-based ligands, viz. VO(cur)(L)Cl] (1, 2) and VO(scur)(L)Cl] (3, 4), where L is 1,10-phenanthroline (phen in 1 and 3), dipyrido3,2-a:2',3'-c]phenazine (dppz in 2 and 4), Hcur is curcumin and Hscur is diglucosylcurcumin, were synthesized and characterized and their cellular uptake, photocytotoxicity, intracellular localization, DNA binding, and DNA photo-cleavage activity studied. Complex VO(cur)(phen)Cl] (1) has (VN2O3Cl)-N-IV distorted octahedral geometry as evidenced from its crystal structure. The sugar appended complexes show significantly higher uptake into the cancer cells compared to their normal analogues. The complexes are remarkably photocytotoxic in visible light (400-700 nm) giving an IC50 value of <5 mu M in HeLa, HaCaT and MCF-7 cells with no significant dark toxicity. The green emission of the complexes was used for cellular imaging. Predominant cytosolic localization of the complexes 1-4 to a lesser extent into the nucleus was evidenced from confocal imaging. The complexes as strong binders of calf thymus DNA displayed photocleavage of supercoiled pUC19 DNA in red light by generating (OH)-O-center dot radicals as the ROS. The cell death is via an apoptotic pathway involving the ROS. Binding to the VO2+ moiety has resulted in stability against any hydrolytic degradation of curcumin along with an enhancement of its photocytotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

4-(p-X-phenyl)thiosemicarbazone of napthaldehyde {where X = Cl (HL1) and X = Br (HL2)}, thiosemicarbazone of quinoline-2-carbaldehyde (HL3) and 4-(p-fluorophenyl) thiosemicarbazone of salicylaldehyde (H2L4) and their copper(I) {Cu(HL1)(PPh3)(2)Br]center dot CH3CN (1) and Cu(HL2)(PPh3)(2)Cl]center dot DMSO (2)} and copper(II) {((Cu2L2Cl)-Cl-3)(2)(mu-Cl)(2)]center dot 2H(2)O (3) and Cu(L-4)(Py)] (4)} complexes are reported herein. The synthesized ligands and their copper complexes were successfully characterized by elemental analysis, cyclic voltammetry, NMR, ESI-MS, IR and UV-Vis spectroscopy. Molecular structures of all the Cu(I) and Cu(II) complexes have been determined by X-ray crystallography. All the complexes (1-4) were tested for their ability to exhibit DNA-binding and - cleavage activity. The complexes effectively interact with CT-DNA possibly by groove binding mode, with binding constants ranging from 10(4) to 10(5) M-1. Among the complexes, 3 shows the highest chemical (60%) as well as photo-induced (80%) DNA cleavage activity against pUC19 DNA. Finally, the in vitro antiproliferative activity of all the complexes was assayed against the HeLa cell line. Some of the complexes have proved to be as active as the clinical referred drugs, and the greater potency of 3 may be correlated with its aqueous solubility and the presence of the quinonoidal group in the thiosemicarbazone ligand coordinated to the metal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and Mycobacterium tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the Mycobacterium tuberculosis and Mycobacterium smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Higher Notch signaling is known to be associated with hematological and solid cancers. We developed a potential immunotherapeutic monoclonal antibody (MAb) specific for the Negative Regulatory Region of Notch1 (NRR). The MAb604.107 exhibited higher affinity for the ``Gain-offunction'' mutants of Notch1 NRR associated with T Acute lymphoblastic Leukemia (T-ALL). Modeling of the mutant NRR with 12 amino-acid insertion demonstrated ``opening'' resulting in exposure of the S2-cleavage site leading to activated Notch1 signaling. The MAb, at low concentrations (1-2 mu g/ml), inhibited elevated ligand-independent Notch1 signaling of NRR mutants, augmented effect of Thapsigargin, an inhibitor of mutant Notch1, but had no effect on the wild-type Notch1. The antibody decreased proliferation of the primary T-ALL cells and depleted leukemia initiating CD34/CD44 high population. At relatively high concentrations, (10-20 mu g/ml), the MAb affected Notch1 signaling in the breast and colon cancer cell lines. The Notch-high cells sorted from solid-tumor cell lines exhibited characteristics of cancer stem cells, which were inhibited by the MAb. The antibody also increased the sensitivity to Doxorubucinirubicin. Further, the MAb impeded the growth of xenografts from breast and colon cancer cells potentiated regression of the tumors along with Doxorubucin. Thus, this antibody is potential immunotherapeutic tool for different cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helicobacter pylori, a human pathogen, is a naturally and constitutively competent bacteria, displaying a high rate of intergenomic recombination. While recombination events are essential for evolution and adaptation of H.pylori to dynamic gastric niches and new hosts, such events should be regulated tightly to maintain genomic integrity. Here, we analyze the role of the nuclease activity of MutS2, a protein that limits recombination during transformation in H.pylori. In previously studied MutS2 proteins, the C-terminal Smr domain was mapped as the region responsible for its nuclease activity. We report here that deletion of Smr domain does not completely abolish the nuclease activity of HpMutS2. Using bioinformatics analysis and mutagenesis, we identified an additional and novel nuclease motif (LDLK) at the N-terminus of HpMutS2 unique to Helicobacter and related epsilon-proteobacterial species. A single point mutation (D30A) in the LDLK motif and the deletion of Smr domain resulted in approximate to 5-10-fold loss of DNA cleavage ability of HpMutS2. Interestingly, the mutant forms of HpMutS2 wherein the LDLK motif was mutated or the Smr domain was deleted were unable to complement the hyper-recombination phenotype of a mutS2(-) strain, suggesting that both nuclease sites are indispensable for an efficient anti-recombinase activity of HpMutS2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibition behavior of colchicine (CC) on the corrosion of mild steel in 0.5 M H2SO4 was evaluated by electrochemical methods such as potentiodynamic polarization and electrochemical impedance spectroscopic measurements. The inhibition efficiency increases with increasing concentration of CC. The potentiodynamic polarization results reveal that CC act as a mixed-type inhibitor by retarding both cathodic and anodic corrosion reactions. Additionally, the synergism was carried out between CC and KI to improve the corrosion inhibition behavior of CC on mild steel. The adsorption of both CC alone and the combined inhibitor (CC + KI) on mild steel surface follows Langmuir adsorption isotherm. The synergism parameter (S (theta) ) was calculated to recognize the existence of synergism between CC and iodide ions. Lastly, an adsorption mechanism of CC molecules with iodide ions is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure of oral cavity to areca nut is associated with several pathological conditions including oral submucous fibrosis (OSF). Histopathologically OSF is characterized by epithelial atrophy, chronic inflammation, juxtaepithelial hyalinization, leading to fibrosis of submucosal tissue and affects 0.5% of the population in the Indian subcontinent. As the molecular mechanisms leading to atrophied epithelium and fibrosis are poorly understood, we studied areca nut actions on human keratinocyte and gingival fibroblast cells. Areca nut water extract (ANW) was cytotoxic to epithelial cells and had a pro-proliferative effect on fibroblasts. This opposite effect of ANW on epithelial and fibroblast cells was intriguing but reflects the OSF histopathology such as epithelial atrophy and proliferation of fibroblasts. We demonstrate that the pro-proliferative effects of ANW on fibroblasts are dependent on insulin-like growth factor signalling while the cytotoxic effects on keratinocytes are dependent on the generation of reactive oxygen species. Treatment of keratinocytes with arecoline which is a component of ANW along with copper resulted in enhanced cytotoxicity which becomes comparable to IC50 of ANW. Furthermore, studies using cyclic voltammetry, mass spectrometry and plasmid cleavage assay suggested that the presence of arecoline increases oxidation reduction potential of copper leading to enhanced cleavage of DNA which could generate an apoptotic response. Terminal deoxynucleotidyl transferase dUTP Nick End Labeling assay and Ki-67 index of OSF tissue sections suggested epithelial apoptosis, which could be responsible for the atrophy of OSF epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNAs are short non-coding RNAs which play an important role in regulating gene expression by mRNA cleavage or by translational repression. The majority of identified miRNAs were evolutionarily conserved; however, others expressed in a species-specific manner. Finger millet is an important cereal crop; nonetheless, no practical information is available on microRNAs to date. In this study, we have identified 95 conserved microRNAs belonging to 39 families and 3 novel microRNAs by high throughput sequencing. For the identified conserved and novel miRNAs a total of 507 targets were predicted. 11 miRNAs were validated and tissue specificity was determined by stem loop RT-qPCR, Northern blot. GO analyses revealed targets of miRNA were involved in wide range of regulatory functions. This study implies large number of known and novel miRNAs found in Finger millet which may play important role in growth and development. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lanthanide complexes Ln(DTPAAQ)(DMF)] (1-3) (Ln - Pr (1), Eu (2), Tb (3), H(3)DTPAAQ - N, N `'-bis(3-amidoquinolyl) diethylenetriamine-N, N', N `'-triacetic acid, DMF - N, N-dimethylformamide) were studied for their structures, photophysical properties, DNA and protein binding, DNA photocleavage, photocytotoxicity and cellular internalization. The crystal structures of complexes Ln(DTPAAQ)(DMF)] (1-3) display a discrete mononuclear nine-coordinate {LnN(3)O(6)} tricapped-trigonal prism (TTP) coordination geometry. The europium and terbium complexes show strong luminescence properties in the visible region having a long luminescence lifetime (tau = 0.51-0.64 ms). The conjugated 3-aminoquinoline moieties act as efficient light harvesting antennae, which upon photoexcitation transfer their energy to Eu(III) or Tb(III) for their characteristic D-5(0) -> F-7(J) or D-5(4) -> F-7(J) f-f transitions respectively. The complexes display efficient binding affinity to DNA (K-b = 3.4 x 10(4) - 9.8 x 10(4) M-1) and BSA (KBSA = 3.03 x 10(4) - 6.57 x 10(4) M-1). Europium and terbium complexes give enhanced luminescence upon interacting with CT-DNA suggesting possible luminescence-based sensing applications for these complexes. Complexes 1-3 show moderate cleavage of supercoiled (SC) DNA to its nicked circular (NC) form on exposure to UV-A light of 312 nm involving formation of singlet oxygen (O-1(2)) and hydroxyl radicals (cOH) in type-II and photoredox pathways. Eu(III) and Tb(III) complexes exhibit remarkable photocytotoxicity with human cervical cancer cell line (HeLa) (IC50 = 20.7-28.5 mM) while remaining essentially noncytotoxic up to 150 mM in the dark. Complexes are nontoxic in nature thus suitable for designing cellular imaging agents. Fluorescence microscopy data reveal primarily cytosolic localization of the Eu(III) and Tb(III) complexes in HeLa cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ternary copper(Il) complexes of salicylaldehyde-histamine Schiff base (HL) and pyridyl ligands, viz. Cu(bpy)(L)](ClO4) (1) and Cu(dppz)(L)](C104) (2), where bpy is 2,2'-bipyridine (in 1) and dppz is dipyrido3,2-a:2',3'-c]phenazine (in 2), were synthesized, characterized and their DNA binding, photo-activated DNA cleavage activity and photocytotoxicity studied. The 1:1 electrolytic one-electron paramagnetic complexes showed a d-d band near 670 nm in aqueous DMF (1:1 v/v). The crystal structure of complex 1 showed the metal in CuN4O distorted square-pyramidal geometry. Complex 2 intercalatively binds to calf-thymus (ct) DNA with a binding constant (K-b) of similar to 10(5) M-1. It exhibited moderate chemical nuclease activity but excellent DNA photocleavage activity in red light of 647 nm forming (OH)-O-center dot radicals. It showed remarkable photocytotoxicity in human cervical cancer cells (HeLa) giving IC50 of 1.6 mu M in visible light (400-700 nm) with low dark toxicity. The photo-induced cell death is via generation of oxidative stress by reactive oxygen species.