329 resultados para Beam parameter product (BPP)
Resumo:
The growth of nonpolar a- plane (1 1 -2 0) orientation of the GaN epilayers were confirmed by high resolution x-ray diffraction studies. An in-plane orientation relationship was found to be 0 0 0 1] GaN parallel to -1 1 0 1] sapphire and -1 1 0 0] GaN parallel to 1 1 -2 0] sapphire. SEM image shows the reasonably smooth surface. The photoluminescence spectrum shows near band emission (NBE) at 3.439 eV. The room temperature I-V characteristics of Au/a-GaN schottky diode performed. The Schottky barrier height (phi(b)) and the ideality factor (eta) for the Au/a-GaN schottky diode found to be 0.50 eV and 2.01 respectively.
Resumo:
We consider the problem of devising incentive strategies for viral marketing of a product. In particular, we assume that the seller can influence penetration of the product by offering two incentive programs: a) direct incentives to potential buyers (influence) and b) referral rewards for customers who influence potential buyers to make the purchase (exploit connections). The problem is to determine the optimal timing of these programs over a finite time horizon. In contrast to algorithmic perspective popular in the literature, we take a mean-field approach and formulate the problem as a continuous-time deterministic optimal control problem. We show that the optimal strategy for the seller has a simple structure and can take both forms, namely, influence-and-exploit and exploit-and-influence. We also show that in some cases it may optimal for the seller to deploy incentive programs mostly for low degree nodes. We support our theoretical results through numerical studies and provide practical insights by analyzing various scenarios.
Resumo:
We consider proper holomorphic mappings of equidimensional pseudoconvex domains in complex Euclidean space, where both source and target can be represented as Cartesian products of smoothly bounded domains. It is shown that such mappings extend smoothly up to the closures of the domains, provided each factor of the source satisfies Condition R. It also shown that the number of smoothly bounded factors in the source and target must be the same, and the proper holomorphic map splits as a product of proper mappings between the factor domains. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
We study the production of the lightest neutralinos in the process e(+)e(-) -> chi(0)(1)chi(0)(1)gamma in supersymmetric grand unified models for the International Linear Collider energies with longitudinally polarized beams. We consider cases where the standard model gauge group is unified into the grand unified gauge groups SU(5), or SO(10). We have carried out a comprehensive study of this process in the SU(5) and SO(10) grand unified theories which includes the QED radiative corrections. We compare and contrast the dependence of the signal cross section on the grand unified gauge group, and on the different representations of the grand unified gauge group, when the electron and positron beams are longitudinally polarized. To assess the feasibility of experimentally observing the radiative production process, we have also considered in detail the background to this process coming from the radiative neutrino production process e(+)e(-)-> nu(nu) over bar gamma with longitudinally polarized electron and positron beams. In addition we have also considered the supersymmetric background coming from the radiative production of scalar neutrinos in the process e(+)e(-) -> (nu) over tilde(nu) over tilde*gamma with longitudinally polarized beams. The process can be a major background to the radiative production of neutralinos when the scalar neutrinos decay invisibly.
Resumo:
Measurement of in-plane motion with high resolution and large bandwidth enables model-identification and real-time control of motion-stages. This paper presents an optical beam deflection based system for measurement of in-plane motion of both macro- and micro-scale motion stages. A curved reflector is integrated with the motion stage to achieve sensitivity to in-plane translational motion along two axes. Under optimal settings, the measurement system is shown to theoretically achieve sub-angstrom measurement resolution over a bandwidth in excess of 1 kHz and negligible cross-sensitivity to linear motion. Subsequently, the proposed technique is experimentally demonstrated by measuring the in-plane motion of a piezo flexure stage and a scanning probe microcantilever. For the former case, reflective spherical balls of different radii are employed to measure the in-plane motion and the measured sensitivities are shown to agree with theoretical values, on average, to within 8.3%. For the latter case, a prototype polydimethylsiloxane micro-reflector is integrated with the microcantilever. The measured in-plane motion of the microcantilever probe is used to identify nonlinearities and the transient dynamics of the piezo-stage upon which the probe is mounted. These are subsequently compensated by means of feedback control. (C) 2013 AIP Publishing LLC.
Resumo:
There is a drop in the flutter boundary of an aeroelastic system placed in a transonic flow due to compressibility effects and is known as the transonic dip. Viscous effects can shift the lo-cation of the shock and depending on the shock strength the boundary layer may separate leading to changes in the flutter speed. An unsteady Euler flow solver coupled with the structural dynamic equations is used to understand the effect of shock on the transonic dip. The effect of various system parameters such as mass ratio, location of the center of mass, position of the elastic axis, ratio of uncoupled natural frequencies in heave and pitch are also studied. Steady turbulent flow results are presented to demonstrate the effect of viscosity on the location and strength of the shock.
Resumo:
Fiber reinforced laminated composite open-section beams are widely used as bearingless rotor flex beams because of their high specific strength and stiffness as well as fatigue life. These laminated composite structures exhibit a number of different failure modes, including fiber-matrix debonding within individual layers, delamination or separation of the layers, transverse cracks through one or more layers and fiber fracture. Delamination is a predominant failure mode in continuous fiber reinforced laminated composites and often initiate near the free edges of the structure. The appearance of delaminations in the composite rotorcraft flexbeams can lead to deterioration of the mechanical properties and, in turn, the helicopter performance as well as safety. Understanding and predicting the influence of free-edge delamination on the overall behavior of the laminates will provide quantitative measures of the extent of the damage and help ensure their damage tolerance.
Resumo:
In the product conceptualization phase of design, sketches are often used for exploration of diverse behaviour patterns of the components to achieve the required functionality. This paper presents a method to animate the sketch produced using a tablet interface to aid verification of the desired behaviour. A sketch is a spatial organization of strokes whose perceptual organization helps one to visually interpret its components and their interconnections. A Gestalt based segmentation followed by interactive grouping and articulation, presented in this paper, enables one to use a mechanism simulation framework to animate the sketch in a “pick and drag” mode to visualize different configurations of the product and gain insight into the product’s behaviour.
Resumo:
The basic objective in the present study is to show that for the most common configuration of an impactor system, an accelerometer cannot exactly reproduce the dynamic response of a specimen subject to impact loading. Assessment of the accelerometer mounted in a drop-weight impactor setup for an axially loaded specimen is done with the aid of an equivalent lumped parameter model (LPM) of the setup. A steel hat-type specimen under the impact loading is represented as a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. A suitable numerical approach has been used to solve the non-linear governing equations for a 3 degrees-of-freedom system in a piece-wise linear manner. The numerical solution following an explicit time integration scheme is used to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the accelerometer, however, predicts a response that qualitatively matches the assumed load–displacement response of the test specimen with a perceptibly lower magnitude of load.
Resumo:
An enantioselective synthesis of the macrolactone core of natural product Sch725674 was accomplished from furfural. Key reactions in assembly of the macrolactone are the use of furan as a but-2-ene-dione equivalent and ring closing metathesis. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We report the self catalytic growth of Sn-doped indium oxide (ITO) nanowires (NWs) over a large area glass and silicon substrates by electron beam evaporation method at low substrate temperatures of 250-400 degrees C. The ITO NWs growth was carried out without using an additional reactive oxygen gas and a metal catalyst particle. Ultrafine diameter (similar to 10-15 nm) and micron long ITO NWs growth was observed in a temperature window of 300-400 degrees C. Transmission electron microscope studies confirmed single crystalline nature of the NWs and energy dispersive spectroscopy studies on the NWs confirmed that the NWs growth proceeds via self catalytic vapor-liquid-solid (VLS) growth mechanism. ITO nanowire films grown on glass substrates at a substrate temperature of 300-400 degrees C have shown similar to 2-6% reflection and similar to 70-85% transmission in the visible region. Effect of deposition parameters was systematically investigated. The large area growth of ITO nanowire films would find potential applications in the optoelectronic devices. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We prove a result on the structure of finite proper holomorphic mappings between complex manifolds that are products of hyperbolic Riemann surfaces. While an important special case of our result follows from the ideas developed by Remmert and Stein, the proof of the full result relies on the interplay of the latter ideas and a finiteness theorem for Riemann surfaces.
Resumo:
The paper proposes a non-destructive method for simultaneous measurement of in-plane and out-of-plane displacements and strains undergone by a deformed specimen from a single moire fringe pattern obtained on the specimen in a dual beam digital holographic interferometry setup. The moire fringe pattern encodes multiple interference phases which carry the information on multidimensional deformation. The interference field is segmented in each column and is modeled as multicomponent quadratic/cubic frequency-modulated signal in each segment. Subsequently, the product form of modified cubic phase function is used for accurate estimation of phase parameters. The estimated phase parameters are further utilized for direct estimation of the unwrapped interference phases and phase derivatives. The simulation and experimental results are provided to validate the effectiveness of the proposed method.
Resumo:
This paper describes the use of liaison to better integrate product model and assembly process model so as to enable sharing of design and assembly process information in a common integrated form and reason about them. Liaison can be viewed as a set, usually a pair, of features in proximity with which process information can be associated. A liaison is defined as a set of geometric entities on the parts being assembled and relations between these geometric entities. Liaisons have been defined for riveting, welding, bolt fastening, screw fastening, adhesive bonding (gluing) and blind fastening processes. The liaison captures process specific information through attributes associated with it. The attributes are associated with process details at varying levels of abstraction. A data structure for liaison has been developed to cluster the attributes of the liaison based on the level of abstraction. As information about the liaisons is not explicitly available in either the part model or the assembly model, algorithms have been developed for extracting liaisons from the assembly model. The use of liaison is proposed to enable both the construction of process model as the product model is fleshed out, as well as maintaining integrity of both product and process models as the inevitable changes happen to both design and the manufacturing environment during the product lifecycle. Results from aerospace and automotive domains have been provided to illustrate and validate the use of liaisons. (C) 2014 Elsevier Ltd. All rights reserved.