332 resultados para ~1H-NMR
Resumo:
The title compound, C(6)H(10)N(2)O, is a zwitterionic pyrazole derivative. The crystal packing is predominantly governed by a three-center iminium-amine N(+)-H center dot center dot center dot O(-)center dot center dot center dot H-N interaction, leading to an undulating sheet-like structure lying parallel to (100).
Resumo:
New complexes of lanthanide perchlorates with di-t-butyl amides of di, tri and tetraglycolic acids have been synthesised. The complexes have the general formula Ln(DiGA)3(ClO4)3; Ln(TriGA)2 (ClO4)3 and Ln(TetGA)2 (C1O4)3, where Ln = La-Yb and Y and DiGA = N,N′, di-t-butyl diglycolamide, TriGA N,N′, di-t-butyl triglycolamide and TetGA = N,N′ di-t-butyl tetraglycolamide, respectively. The complexes have been characterized by analysis, electrolytic conductance, infrared,1H and13C nuclear magnetic resonance and electronic spectral data.Infrared spectra indicate the coordination of all the available ether oxygens and the amide carbonyls in each of the ligands, to the metal ions. IR and conductance data show that the perchlorate groups in all the complexes are ionic.1H and13C NMR data support the IR data regarding the mode of coordination of ligands to the metal ions. Electronic spectral shapes have been interpreted in terms of nine, eight and ten coordination in DiGA, TriGA and TetGA complexes respectively.
Resumo:
NMR spectra of molecules oriented in liquid-crystalline matrix provide information on the structure and orientation of the molecules. Thermotropic liquid crystals used as an orienting media result in the spectra of spins that are generally strongly coupled. The number of allowed transitions increases rapidly with the increase in the number of interacting spins. Furthermore, the number of single quantum transitions required for analysis is highly redundant. In the present study, we have demonstrated that it is possible to separate the subspectra of a homonuclear dipolar coupled spin system on the basis of the spin states of the coupled heteronuclei by multiple quantum (MQ)−single quantum (SQ) correlation experiments. This significantly reduces the number of redundant transitions, thereby simplifying the analysis of the complex spectrum. The methodology has been demonstrated on the doubly 13C labeled acetonitrile aligned in the liquid-crystal matrix and has been applied to analyze the complex spectrum of an oriented six spin system.
Resumo:
Molecules exhibiting a thermotropic liquid-crystalline property have acquired significant importance due to their sensitivity to external stimuli such as temperature, mechanical forces, and electric and magnetic fields. As a result, several novel mesogens have been synthesized by the introduction of various functional groups in the vicinity of the aromatic core as well as in the side chains and their properties have been studied. In the present study, we report three-ring mesogens with hydroxyl groups at one terminal. These mesogens were synthesized by a multistep route, and structural characterization was accomplished by spectral techniques. The mesophase properties were studied by hot-stage optical polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. An enantiotropic nematic phase was noticed for lower homologues, while an additional smectic C phase was found for higher homologues. Solid-state high-resolution natural abundance (13)C NMR studies of a typical mesogen in the solid phase and in the mesophases have been carried out. The (13)C NMR spectrum of the mesogen in the smectic C and nematic phases indicated spontaneous alignment of the molecule in the magnetic field. By utilizing the two-dimensional separated local field (SLF) NMR experiment known as SAMPI4, (13)C-(1)H dipolar couplings have been obtained, which were utilized to determine the orientational order parameters of the mesogen.
Resumo:
(2)H-{(1)H} 1D and 2D-NMR spectroscopy is used to evaluate the enantiodiscrimination potential of DNA-based, lyotropic chiral mesophases on a series of (pro) chiral amino acids.
Resumo:
The bis(amino)hexachlorocyclotetraphosphazenes, 2-trans-6-N4P4 (NHR)2Cl6, R [dbnd] Me, Pr n Pr i , Bu n , CH2Ph, Ph, are obtained from the reaction of N4P4Cl8 with four mol. equivalents of the appropriate amine. Isomers with 2,4-structures have been isolated for R [dbnd] Bu n , CH2Ph. The 1H and 31P NMR spectra of these bis(amino) compounds and of their dimethylamino derivatives, 2-trans-6-N4P4 (NMe2)6 (NHR)2 are discussed.
Resumo:
NMR spectroscopy has witnessed tremendous advancements in recent years with the development of new methodologies for structure determination and availability of high-field strength spectrometers equipped with cryogenic probes. Supported by these advancements, a new dimension in NMR research has emerged which aims to increase the speed with data is collected and analyzed. Several novel methodologies have been proposed in this direction. This review focuses on the principles on which these different approaches are based with an emphasis on G-matrix Fourier transform NMR spectroscopy.
Resumo:
One of the significant advancements in Nuclear Magnetic Resonance spectroscopy (NMR) in combating the problem of spectral complexity for deriving the structure and conformational information is the incorporation of additional dimension and to spread the information content in a two dimensional space. This approach together with the manipulation of the dynamics of nuclear spins permitted the designing of appropriate pulse sequences leading to the evolution of diverse multidimensional NMR experiments. The desired spectral information can now be extracted in a simplified and an orchestrated manner. The indirect detection of multiple quantum (MQ) NMR frequencies is a step in this direction. The MQ technique has been extensively used in the study of molecules aligned in liquid crystalline media to reduce spectral complexity and to determine molecular geometries. Unlike in dipolar coupled systems, the size of the network of scalar coupled spins is not big in isotropic solutions and the MQ 1H detection is not routinely employed,although there are specific examples of spin topology filtering. In this brief review, we discuss our recent studies on the development and application of multiple quantum correlation and resolved techniques for the analyses of proton NMR spectra of scalar coupled spins.
Resumo:
The liquid crystalline phase represents a unique state of matter where partial order exists on molecular and supra-molecular levels and is responsible for several interesting properties observed in this phase. Hence a detailed study of ordering in liquid crystals is of significant scientific and technological interest. NMR provides several parameters that can be used to obtain information about the liquid crystalline phase. Of these, the measurement of dipolar couplings between nuclei has proved to be a convenient way of obtaining liquid crystalline ordering since the coupling is dependent on the average orientation of the dipolar vector in the magnetic field which also aligns the liquid crystal.However, measurement of the dipolar coupling between a pair of selected nuclei is beset with problems that require special solutions. In this article the use of cross polarization for measuring dipolar couplings in liquid crystals is illustrated. Transient oscillations observed during cross polarization provide the dipolar couplings between essentially isolated nearest neighbor spins which can be extracted for several sites simultaneously by employing two-dimensional NMR techniques. The use of the method for obtaining heteronuclear dipolar couplings and hence the order parameters of liquid crystals is presented. Several modifications to the basic experiment are considered and their utility illustrated. A method for obtaining proton–proton dipolar couplings, by utilizing cross polarization from the dipolar reservoir, is presented. Some applications are also highlighted.
Resumo:
The novel three-component chiral derivatization protocols have been derived for (1)H and (19)F NMR spectroscopic discrimination of a series of chiral hydroxy acids by their coordination and self-assembly with optically active a-methylbenzylamine and 2-formylphenylboronic acid. In addition, the optically pure (S)-mandelic acid in combination with 2-formylphenylboronic acid permits visualization of enantiomers of primary amines. These protocols have been demonstrated on enantiodiscrimination of chiral amines and hydroxy acids.
Resumo:
Obestatin is a more recently discovered hormone that is encoded by the ghrelin gene and produced in the stomach and gut. We report NMR analysis on synthetic Obestatin (OB23), a 23 residue peptide, along with three overlapping fragments of the same in methanol solvent as a first step towards structure activity relationship. Selective substitutions on the promising N-terminal and middle fragments of obestatin have been carried out in order to improve the efficacy and potency. In the N-terminal fragment two peptides were obtained by the replacement of Gly (8) with a-aminoisobutyric acid (Aib, U) and Phe (F5) with Cyclohexylalanine (Cha). In case of the middle fragment both Gly (3) and Gly (8) were replaced with Aib residues. The rationale being, these unusual amino acids could provide protection from immediate degradation and aid structure stabilization. Our previous studies showed that the N-terminal and the middle fragment were unstructured and hence this substitution would directly evaluate the effect of structure on the activity of these fragment analogs. Detailed NMR analysis clearly demonstrates formation of helical secondary structure in all the peptide analogues and provides justification for relative activities reported by our group previously (Nagaraj et al. 2009).