288 resultados para underground water salination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new bis-indolyl-based colorimetric probe has been synthesized. This allows a Michael-type adduct formation for the detection of cyanide ions. The probe shows a remarkable color change from red to colorless upon addition of the cyanide ions in pure water. The cyanide ion reacts with the probe and removes the conjugation of the bis-indolyl moiety of the probe with that of the 4-substituted aromatic ring. This renders the probe colorless. The mechanism of the reaction of the probe with the cyanide ion was established by using 1H and 13C NMR spectroscopy, mass spectrometry, and kinetic studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of bilayer melting transition on thermodynamics and dynamics of interfacial water using molecular dynamics simulation with the two-phase thermodynamic model. We show that the diffusivity of interface water depicts a dynamic crossover at the chain melting transition following an Arrhenius behavior until the transition temperature. The corresponding change in the diffusion coefficient from the bulk to the interface water is comparable with experimental observations found recently for water near 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles Phys. Chem. Chem. Phys. 13, 7732 (2011)]. The entropy and potential energy of interfacial water show distinct changes at the bilayer melting transition, indicating a strong correlation in the thermodynamic state of water and the accompanying first-order phase transition of the bilayer membrane. DOI: 10.1103/PhysRevLett.110.018303

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently nano scale zero valent iron particles (nZVI) have been considered as smart adsorbent for environmental and groundwater remediation. Although several synthetic methods are available for the preparation of nZVI, air stable nZVI are not available for remediation works. Further, challenges demand synthesis of nZVI without stabilizers and capping agents. A modified methodology for the synthesis of air stable nZVI has been developed without any capping agents and characterized by powder X-Ray Diffraction (XRD), Scanning Electron Microscopy Energy-dispersive X-Ray (SEM-EDS), Transmission Electron Microscopy (TEM) and X-Ray Photoelectron Spectroscopy (XPS). The results of the present study suggest that the synthetic nZVI are air-stable over a period of one year and consists of particles of 30-40 nm in diameter. Although a layer of less than 3 am thick oxide/hydroxide is observed by TEM and XPS, it appears to be due to oxidation of outer surface during analysis. Adsorption study has shown that the synthetic nZVI are more effective adsorbent than the commercial nZVI and can remove simultaneously arsenite As-III] and arsenate As-V] from water without prior reduction of As-V to As-III. The removal process is adsorptive rather than precipitative and the removal of As-III is greater than that of As-V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hooghly River estuary provides a unique experimental site to understand the effect of monsoonal river discharge on freshwater and seawater mixing. Water samples collected bi-weekly for a duration of 17 months were analyzed for salinity, delta O-18,delta C-13(DIC), as well as delta D to investigate the differential mixing of freshwater and seawater. The differences in salinity and delta O-18 of samples collected during low and high tides on the same day are strongly correlated suggesting a well mixed water column at our sampling site. Low salinity and depleted delta O-18 during monsoon is consistent with increased river discharge as well as high rainfall. We identified different slopes in a delta O-18 versus salinity plot for the estuary water samples collected during monsoon and non-monsoon seasons. This is driven by composition of the freshwater source which is dominated by rainwater during monsoon and rivers during non-monsoon months. Selected delta D analyses of samples indicate that groundwater contributes significantly to the Hooghly Estuary during low rainfall times of the year. delta C-13(DIC) measured in the water recorded low values towards the end of monsoon indicating low productivity (i.e. increased organic respiration) while progressively increasing delta C-13(DIC) values from October till January as well as during some of the pre-monsoon months can be explained by increasing productivity. Very low delta C-13(DIC) (similar to-20%0) suggests involvement of carbon derived from anaerobic oxidation of organics and/or methane with potential contribution from increased anthropogenic water supply. An estimate of seawater incursion into the Hooghly Estuary at different times of the year is obtained by using salinity data in a two-component mixing model. Presence of seawater was found maximum (31-37%) during February till July and lowest (less than or equal to 6%) from September till November. We notice a temporal offset between Ganges River discharge farther upstream at Farakka and salinity variation at the Hooghly Estuary. We believe that this time lag is a result of the physical distance between Farakka and Kakdweep (our sampling location) and put constraints on the travel time of river water during early monsoon. (c) 2012 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the activity of Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalysts towards the CO oxidation and water gas shift (VMS) reaction. Both the catalysts were synthesized in the nano crystalline form by a low temperature sonochemical method and characterized by different techniques such as XRD, FT-Raman, TEM, FT-IR, XPS and BET surface analyzer. H-2-TPR results corroborate the intimate contact between noble metal and Fe ions in the both catalysts that facilitates the reducibility of the support. In the absence of feed CO2 and H-2, nearly 100% conversion of CO to CO2 with 100% H-2 selectivity was observed at 300 degrees C and 260 degrees C respectively, for Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalyst. However, the catalytic performance of Ti0.73Pd0.02Fe0.25O2-delta deteriorates in the presence of feed CO2 and H-2. The change in the support reducibility is the primary reason for the significant increase in the activity for CO oxidation and WGS reaction. The effect of Fe addition was more significant in Ti0.73Pd0.02Fe0.25O2-delta than Ti0.84Pt0.01Fe0.15O2-delta. Based on the spectroscopic evidences and surface phenomena, a hybrid reaction scheme utilizing both surface hydroxyl groups and the lattice oxygen was hypothesized over these catalysts for WGS reaction. The mechanisms based on the formate and redox pathway were used to fit the ldnetic data. The analysis of experimental data shows the redox mechanism is the dominant pathway over these catalysts. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured Pd-modified Ni/CeO2 catalyst was synthesized in a single step by solution combustion method and characterized by XRD, TEM, XPS, TPR and BET surface analyzer techniques. The catalytic performance of this compound was investigated by performing the water gas shift (WGS) and catalytic hydrogen combustion (CHC) reaction. The present compound is highly active and selective (100%) toward H-2 production for the WGS reaction. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic substitution of Pd and Ni species in CeO2. The creation of oxide vacancies due to ionic substitution of aliovalent ions induces dissociation of H2O that is responsible for the improved catalytic activity for WGS reaction. The combined H-2-TPR and XPS results show a synergism exists among Pd, Ni and ceria support. The redox reaction mechanism was used to correlate experimental data for the WGS reaction and a mechanism involving the interaction of adsorbed H-2 and O-2 through the hydroxyl species was proposed for CHC reaction. The parity plot shows a good correspondence between the experimental and predicted reaction rates. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban water bodies frequently receive untreated sewage and water levels in such water bodies are maintained by daily inputs of sewage. They function as “variable-zone” anaerobic-aerobic lagoons suffering several macrophyte, biotic and abiotic stresses. We have studied two such lakes in Bangalore (Bellandur-360 ha and Varthur-220 ha) to understand whether such an occurrence could be made beneficial (maintaining water levels as well as treatment). Such hypertrophic water body receives sewage at 180-250mg/L and is discharged at 25-80mg/L COD/BOD in different seasons. In an earlier study we reported macrophyte altering the purification function of the water body. In this paper we studied the impact of phytoplankton dynamics and macrophyte cover on the functions such as organic load removal. Algal community analysis, algal biomass, macrophyte cover, water quality, nutrient status was studied seasonally during 2009-2010. Oxygen deficiency and sometimes anoxia, recorded from surface samples resulted in high quantities of NH4+-N (30-40mg/L) and phosphate (0.5-4mg/L)-characteristics of anoxic hypertrophic urban lakes. The productiveness favoured high phytoplanktonic community characterized by small cells (<10μm; Chlorella sp. - highest numbers). The lake could be clearly demarcated into an initial anaerobic zone (40% area), a facultative zone (20%) and an aerobic zone (40%) based on redox values and GIS/bathymetry. During summer the lake is covered by floating macrophytes converting the lake into an anoxic/anaerobic water pool subduing the water purification function as well as aesthetics. When macrophytes are controlled such sewage fed water bodies can be used for treating urban wastewater while also maintaining water sustainability in these semi-arid ecosystems. This paper reports the community dynamics of phytoplankton, their function and competition with macrophytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme, D-xylose isomerase (D-xylose keto-isomerase; EC 5.3.1.5) is a soluble enzyme that catalyzes the conversion of the aldo-sugar D-xylose to the keto-sugar D-xylulose. A total of 27 subunits of D-xylose isomerase from Streptomyces rubiginosus were analyzed in order to identify the invariant water molecules and their water-mediated ionic interactions. A total of 70 water molecules were found to be invariant. The structural and/or functional roles of these water molecules have been discussed. These invariant water molecules and their ionic interactions may be involved in maintaining the structural stability of the enzyme D-xylose isomerase. Fifty-eight of the 70 invariant water molecules (83%) have at least one interaction with the main chain polar atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of surface mechanical and particle tracking measurements of nanoparticles trapped at the air-water interface as a function of their areal density. We monitor both the surface pressure (II) and isothermal compression modulus (epsilon) as well as the dynamics of nanoparticle clusters, using fluorescence confocal microscopy while they are compressed to very high density near the two dimensional close packing density Phi similar to 0.82. We observe non-monotonic variation in both epsilon and the dynamic heterogeneity, characterized by the dynamical susceptibility chi(4) with Phi, in such high density monolayers. We provide insight into the underlying nature of such transitions in close packed high density nanoparticle monolayers in terms of the morphology and flexibility of these soft colloidal particles.. We discuss the significance our results in the context of related studies on two dimensional granular or colloidal systems. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing commercial applications had brought aluminium oxide nanoparticles under,toxicologists' purview. In the present study, the cytotoxicity of two different sized aluminium oxide nanoparticles (ANP(1), mean hydrodynamic diameter 82.6 +/- 22 nm and ANP(2), mean hydrodynamic diameter 246.9 +/- 39 nm) towards freshwater algal isolate Chlorella ellipsoids at low exposure levels (<= 1 mu g/mL) using sterile lake water as the test medium was assessed. The dissolution of alumina nanoparticles and consequent contribution towards toxicity remained largely unexplored owing to its presumed insoluble nature. Herein, the leached Al3+ ion mediated toxicity has been studied along with direct particulate toxicity to bring out the dynamics of toxicity through colloidal stability, biochemical, spectroscopic and microscopic analyses. The mean hydrodynamic diameter increased with time both for ANP(1) 82.6 +/- 22 nm (0 h) to 246.3 +/- 59 nm (24h), to 1204 +/- 140 nm (72 h)] and ANP(2) 246.9 +/- 39 nm (Oh) to 368.28 +/- 48 nm (24 h), to 1225.96 +/- 186 nm (72 h)] signifying decreased relative abundance of submicron sized particles (<1000 nm). The detailed cytotoxicity assays showed a significant reduction in the viability dependent on dose and exposure. A significant increase in ROS and LDH levels were noted for both ANPs at 1 mu g/mL concentration. The zeta potential and FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (SEM, TEM, and CLSM). At 72 h, significant Al3+ ion release in the test medium 0.092 mu g/mL for ANP(1), and 0.19 mu g/mL for ANP(2)] was noted, and the resulting suspension containing leached ions caused significant cytotoxicity, revealing a substantial ionic contribution. This study indicates that both the nano-size and ionic dissolution play a significant role in the cytotoxicity of ANPs towards freshwater algae, and the exposure period largely determines the prevalent mode of nano-toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosized Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe) has been synthesized using a low temperature sonication method and characterized using XRD, TEM, XPS and H-2-TPR. The potential application of both the solid solutions has been explored as exhaust catalysts by performing CO oxidation. The addition of Si- and Fe-in Ce0.95Ru0.05O2-delta greatly enhanced the reducibility of Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe), as indicated by the H-2-TPR study. The oxygen storage capacity has been used to correlate surface oxygen reactivity to the CO oxidation activity. Both the compounds reversibly release lattice oxygen and exhibit excellent CO oxidation activity with 99% conversion below 200 degrees C. A bifunctional reaction mechanism involving CO oxidation by the extraction of lattice oxygen and rejuvenation of oxide vacancy with gas feed O-2 has been used to correlate experimental data. The performance of both the solid solutions has also been investigated for energy application by performing the water gas shift reaction. The present catalysts are highly active and selective towards the hydrogen production and a lack of methanation activity is an important finding of present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A porous carbon foam (CF) electrode modified with a reduced graphene oxide-Ag (rGO-Ag) nanocomposite has been fabricated to purify water. It can perform as an antibacterial device by killing pathogenic microbes with the aid of a 1.5 V battery, with very little power consumption. The device is recycled ten times with good performance for long term usage. It is shown that the device may be implemented as a fast water purifier to deactivate the pathogens in drinking water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of poly (ethylene-co-methacrylic acid) (PEMA) and poly (vinyl alcohol-co-ethylene) (EVOH) were studied for encapsulating Schottky structured organic devices. A calcium degradation test was used to determine water vapor transmission rates and to determine the moisture barrier performance of neat and blend films. Moisture barrier analysis for the neat and blend compositions was discussed concerning the interactions in the blend, diffusivity of water molecules through the unit cell systems, and the occupiable free volumes available in the unit cells using molecular dynamics simulations. The experimental results of water vapor permeation were correlated with diffusion behavior predicted from molecular dynamics simulations results. The effectiveness of the blend as a suitable barrier material in increasing the lifetime of an encapsulated Schottky structured organic device was determined.