305 resultados para tree layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study demonstrates the use of few-layer borocarbonitride nanosheets synthesized by a simple method as non-platinum cathode catalysts for the oxygen reduction reaction (ORR) in alkaline medium. Composition-dependent ORR activity is observed and the best performance was found when the composition was carbon-rich. Mechanistic aspects reveal that ORR follows the 4e(-) pathway with kinetic parameters comparable to those of the commercial Pt/C catalyst. Excellent methanol tolerance is observed with the BCN nanosheets unlike with Pt/C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an electrochemical technique for the large scale synthesis of high quality few layer graphene sheets (FLGS) directly from graphite using oxalic acid (a weak acid) as the electrolyte. One of the interesting observations is that the FLGS are stable at least up to 800 degrees C and hence have potential application in solid oxide fuel cells as a gas diffusion layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports characteristics of inertia-gravity waves (IGWs) in the atmospheric boundary layer during the passage of Tropical Cylone-03B, using the Doppler Sound Detection and Ranging (SODAR) observations at the Indian tropical station of Gadanki (13.45 degrees N, 79.2 degrees E; near the east coast of India). Wavelet analysis of horizontal winds indicates significant wave motion (60h) near the characteristic inertial period. The hodograph analysis of the filtered winds shows an anti-cyclonic turning of horizontal wind with height and time, indicating the presence of IGW. This study finds important implications in boundary layer dynamics during the passage of tropical cyclones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current methods for molecular simulations of Electric Double Layer Capacitors (EDLC) have both the electrodes and the electrolyte region in a single simulation box. This necessitates simulation of the electrode-electrolyte region interface. Typical capacitors have macroscopic dimensions where the fraction of the molecules at the electrode-electrolyte region interface is very low. Hence, large systems sizes are needed to minimize the electrode-electrolyte region interfacial effects. To overcome these problems, a new technique based on the Gibbs Ensemble is proposed for simulation of an EDLC. In the proposed technique, each electrode is simulated in a separate simulation box. Application of periodic boundary conditions eliminates the interfacial effects. This in addition to the use of constant voltage ensemble allows for a more convenient comparison of simulation results with experimental measurements on typical EDLCs. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saccharomyces boulardii was encapsulated by layer-by-layer technique (LbL) using oppositely charged polyelectrolytes, chitosan and dextran sulfate to protect from degradation during its gastrointestinal transit. The protective effect of the coating was evaluated by checking viability after subjecting the coated cells to lyophilisation and simulated gastrointestinal conditions. During lyophilization, coated S. boulardii was found to have an enhanced viability of 7.74 +/- 2.00 log CFU/100 mg (5.62 x 10(6) +/- 2.12 CFU/100 mg) and 5.53 +/- 1.85 log CFU/100 mg (3.46 x 10(5) 1.73 CFU/100 mg) for uncoated cells. On sequential treatment with simulated gastric and intestinal juice, the coated cells had a viability of 4.59 +/- 1.52 log CFU/100 mg (3.8 x 104 +/- 1.52 CFU/100 mg) while only 1.90 +/- 0.80 log CFU/100 mg (0.79 x 102 +/- 0.81 CFU/100 mg) of uncoated cells survived. Confocal studies displayed the selective permeability of the coated cells which plays a significant role in maintaining the integrity and viability of the yeast cells. This clearly indicates that LbL is an efficient protective encapsulation technique and it could be potentially used for improving therapeutic applications of yeast. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach is presented for achieving an enhanced photo-response in a few layer graphene (FLG) based photodetector that is realized by introducing defect sites in the FLG. Fabrication induced wrinkle formation in graphene presented a four-fold enhancement in the photocurrent when compared to unfold PLC. Interestingly, it was observed that the addition of few multiwalled carbon nanotubes to an FLG improves the photocurrent by two-fold along with a highly stable response as compared to FLG alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shock-Boundary Layer Interaction (SBLI) often occurs in supersonic/hypersonic flow fields. Especially when accompanied by separation (termed strong interaction), the SBLI phenomena largely affect the performance of the systems where they occur, such as scramjet intakes, thus often demanding the control of the interaction. Experiments on the strong interaction between impinging shock wave and boundary layer on a flat plate at Mach 5.96 are carried out in IISc hypersonic shock tunnel HST-2. The experiments are performed at moderate flow total enthalpy of 1.3 MJ/kg and freestream Reynolds number of 4 million/m. The strong shock generated by a wedge (or shock generator) of large angle 30.96 degrees to the freestream is made to impinge on the flat plate at 95 mm (inviscid estimate) from the leading edge, due to which a large separation bubble of length (75 mm) comparable to the distance of shock impingement from the leading edge is generated. The experimental simulation of such large separation bubble with separation occurring close to the leading edge, and its control using boundary layer bleed (suction and tangential blowing) at the location of separation, are demonstrated within the short test time of the shock tunnel (similar to 600 mu s) from time resolved schlieren flow visualizations and surface pressure measurements. By means of suction - with mass flow rate one order less than the mass flow defect in boundary layer - a reduction in separation length by 13.33% was observed. By the injection of an array of (nearly) tangential jets in the direction of mainstream (from the bottom of the plate) at the location of separation - with momentum flow rate one order less than the boundary layer momentum flow defect - 20% reduction in separation length was observed, although the flow field was apparently unsteady. (C) 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using polarization-dependent x-ray photoemission electron microscopy, we have investigated the surface effects on antiferromagnetic (AFM) domain formation. Depth-resolved information obtained from our study indicates the presence of strain-induced surface AFM domains on some of the cleaved NiO(100) crystals, which are unusually thinner than bulk AFM domain wall widths (similar to 150 nm). Existence of such magnetic skin layer is substantiated by exchange-coupled ferromagnetic Fe domains in Fe/NiO(100), thereby evidencing the influence of this surface AFM domains on interfacial magnetic coupling. Our observations demonstrate a depth evolution of AFM structure in presence of induced surface strain, while the surface symmetry-breaking in absence of induced strain does not modify the bulk AFM domain structure. Realization of such thin surface AFM layer will provide better microscopic understanding of the exchange bias phenomena. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A special morphological zinc oxide (ZnO) photoanode for dye-sensitized solar cell was fabricated by simple sol-gel drop casting technique. This film shows a wrinkled structure resembling the roots of banyan tree, which acts as an effective self scattering layer for harvesting more visible light and offers an easy transport path for photo-injected electrons. These ZnO electrode of low thickness (similar to 5 mu m) gained an enhanced short-circuit current density of 6.15 mA/cm(2), open-circuit voltage of 0.67 V, fill factor of 0.47 and overall conversion efficiency of 1.97 % under 1 sun illumination. This shows a high conversion efficiency and a superior performance than that of ZnO nanoparticle-based photoanode (eta similar to 1.13 %) of high thickness (similar to 8 mu m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbonization of milk-free coconut kernel pulp is carried out at low temperatures. The carbon samples are activated using KOH, and electrical double-layer capacitor (EDLC) properties are studied. Among the several samples prepared, activated carbon prepared at 600 A degrees C has a large surface area (1,200 m(2) g(-1)). There is a decrease in surface area with increasing temperature of preparation. Cyclic voltammetry and galvanostatic charge-discharge studies suggest that activated carbons derived from coconut kernel pulp are appropriate materials for EDLC studies in acidic, alkaline, and non-aqueous electrolytes. Specific capacitance of 173 F g(-1) is obtained in 1 M H2SO4 electrolyte for the activated carbon prepared at 600 A degrees C. The supercapacitor properties of activated carbon sample prepared at 600 A degrees C are superior to the samples prepared at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stoichiometric tin (II) sulfide (SnS) nano-structures were synthesized on SnS(010)/glass substrates using a simple and low-temperature chemical solution method, and their physical properties were investigated. The as-synthesized SnS nanostructures exhibited orthorhombic crystal structure and most of the nanocrystals are preferentially oriented along the <010> direction. These nanostructures showed p-type electrical conductivity and high electrical resistivity of 93 Omega cm. SnS nanostructures exhibited a direct optical band gap of 1.43 eV. While increasing the surrounding temperature from 20 to 150 degrees C, the electrical resistivity of the structures decreased and exhibited the activation energy of 0.28 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barrier materials are required for encapsulating organic devices. A simple methodology based on organic passivation layer on a flexible substrate has been developed in this work. Stearyl stearate ( SS) was directly coated over the flexible Surlyn film. The barrier films with SS passivation layer exhibited much lower water vapor transmission rates compared to the neat Surlyn films. Moreover, the effect of the process of deposition of organic passivation layer on the resultant water vapor properties of the barrier films was evaluated. The accelerated lifetime studies conducted on encapsulated organic photovoltaics showed that the passivation layer improved the device performance by several fold compared to the non-passivated barrier films. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure of an austenitic SS 304L rapidly quenched from its semi-solid state shows a unique annular austenitic ring in between the core of each globule and its ferritic outer layer. On the basis of experimental results and microstructural analysis, it is proposed that the ring is formed as a result of preferential austenitic phase nucleation in a small quantity of liquid entrapped between adjacent solid globules during rapid quenching, in spite of the fact that ferrite is the thermodynamically stable phase for the alloy. (C) 2014 Elsevier B.V. All rights reserved.