326 resultados para size spectrum
Resumo:
Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
This article presents the details of estimation of fracture parameters for high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization of ingredients of HSC, HSC1 and UHSC have been provided. Experiments have been carried out on beams made up of HSC, HSC1 and UHSC considering various sizes and notch depths. Fracture characteristics such as size independent fracture energy (G(f)), size of fracture process zone (C-f), fracture toughness (K-IC) and crack tip opening displacement (CTODc) have been estimated based on the experimental observations. From the studies, it is observed that (i) UHSC has high fracture energy and ductility inspite of having a very low value of C-f; (ii) relatively much more homogeneous than other concretes, because of absence of coarse aggregates and well-graded smaller size particles; (iii) the critical SIF (K-IC) values are increasing with increase of beam depth and decreasing with increase of notch depth. Generally, it can be noted that there is significant increase in fracture toughness and CTODc. They are about 7 times in HSC1 and about 10 times in UHSC compared to those in HSC; (iv) for notch-to-depth ratio 0.1, Bazant's size effect model slightly overestimates the maximum failure loads compared to experimental observations and Karihaloo's model slightly underestimates the maximum failure loads. For the notch-to-depth ratio ranging from 0.2 to 0.4 for the case of UHSC, it can be observed that, both the size effect models predict more or less similar maximum failure loads compared to corresponding experimental values.
Resumo:
We consider nonparametric sequential hypothesis testing when the distribution under null hypothesis is fully known and the alternate hypothesis corresponds to some other unknown distribution. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. These algorithms are motivated from spectrum sensing application in Cognitive Radios. Universal sequential hypothesis testing using Lempel Ziv codes and Krichevsky-Trofimov estimator with Arithmetic Encoder are considered and compared for different distributions. Cooperative spectrum sensing with multiple Cognitive Radios using universal codes is also considered.
Resumo:
Efficient ZnO:Eu3+ (1-11 mol%) nanophosphors were prepared for the first time by green synthesis route using Euphorbia tirucalli plant latex. The final products were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), etc. The average particle size of ZnO:Eu3+ (7 mol%) was found to be in the range 27-47 nm. With increase of plant latex, the particle size was reduced and porous structure was converted to spherical shaped particles. Photoluminescence (PL) spectra indicated that the peaks situated at similar to 590, 615, 648 and 702 nm were attributed to the D-5(0) -> F-7(j(j=1,2,3,4)) transitions of Eu3+ ions. The highest PL intensity was recorded for 7 mol% with Eu3+ ions and 26 ml plant latex concentration. The PL intensity increases with increase of plant latex concentration up to 30 ml and there after it decreases. The phosphor prepared by this method show spherical shaped particles, excellent chromaticity co-ordinates in the white light region which was highly useful for WLED's. Further, present method was reliable, environmentally friendly and alternative to economical routes. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
The evolution of sexually dimorphic, elaborate male traits that are seemingly maladaptive may be driven by sexual selection (male-male competition and or female mate choice). Tusk possession in the Asian elephant is sexually dimorphic and exaggerated but its role in male-male competition has not yet been determined. We examined the role of the tusks in establishing dominance along with two other known male-male signals, namely, body size and musth (a temporary physiologically heightened sexual state) in an Asian elephant population in northeastern India with equal proportions of tusked and tuskless males. We observed 116 agonistic interactions with clear dominance outcomes between adult (>15 years) males during 458 field days in the dry season months of 2008-2011. A generalized linear mixed-effects model was used to predict the probability of winning as a function of body size, tusk possession and musth status relative to the opponent. A hierarchy of the three male-male signals emerged from this analysis, with musth overriding body size and body size overriding tusk possession. In this elephant population tusk possession thus plays a relatively minor role in male-male competition. An important implication of musth and body size being stronger determinants of dominance than tusk possession is that it could facilitate rapid evolution of tuskless males in the population under artificial selection against tusked individuals, which are poached for ivory. (C) 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Structural dynamics, dielectric permittivity and ferroelectric properties in poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) (PVDF/PMMA) blends with respect to crystalline morphology was systematically investigated in presence of amine functionalized MWNTs (NH2-MWNTs) using dielectric spectroscopy. The crystalline morphology and the crystallization driven demixing in the blends was assessed by light microscopy (LM), wide angle X-ray diffraction (WXRD) and, in situ, by shear rheology. The crystal nucleation activity of PVDF was greatly induced by NH2-MWNTs, which also showed two distinct structural relaxations in dielectric loss owing to mobility confinement of PVDF chains and smaller cooperative lengths. The presence of crystal-amorphous interphase was supported by the presence of interfacial polarization at lower frequencies in the dielectric loss spectra. On contrary, the control blends showed a single broad relaxation at higher frequency due to defective crystal nuclei. This was further supported by monitoring the dielectric relaxations during isothermal crystallization of PVDF in the blends. These observations were addressed with respect to the spherulite sizes which were observed to be larger in case of blends with NH2-MWNTs. Higher dielectric permittivity with minimal losses was also observed in blends with NH2-MWNTs as compared to neat PVDF. Polarization obtained using P-E (polarization-electric field) hysteresis loops was higher in case of blends with NH2-MWNTs in contrast to control blends and PVDF. These observations were corroborated with the charge trapped at the crystal-amorphous interphase and larger crystal sizes in the blends with NH2-MWNTs. The microstructure and localization of MWNTs were assessed using SEM.
Resumo:
Three new electron-rich metal-organic frameworks (MOF-1-MOF-3) have been synthesized by employing ligands bearing aromatic tags. The key role of the chosen aromatic tags is to enhance the -electron density of the luminescent MOFs. Single-crystal X-ray structures have revealed that these MOFs form three-dimensional porous networks with the aromatic tags projecting inwardly into the pores. These highly luminescent electron-rich MOFs have been successfully utilized for the detection of explosive nitroaromatic compounds (NACs) on the basis of fluorescence quenching. Although all of the prepared MOFs can serve as sensors for NACs, MOF-1 and MOF-2 exhibit superior sensitivity towards 4-nitrotoluene (4-NT) and 2,4-dinitrotoluene (DNT) compared to 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB). MOF-3, on the other hand, shows an order of sensitivity in accordance with the electron deficiencies of the substrates. To understand such anomalous behavior, we have thoroughly analyzed both the steady-state and time-resolved fluorescence quenching associated with these interactions. Determination of static Stern-Volmer constants (K-S) as well as collisional constants (K-C) has revealed that MOF-1 and MOF-2 have higher K-S values with 4-NT than with TNT, whereas for MOF-3 the reverse order is observed. This apparently anomalous phenomenon was well corroborated by theoretical calculations. Moreover, recyclability and sensitivity studies have revealed that these MOFs can be reused several times and that their sensitivities towards TNT solution are at the parts per billion (ppb) level.
Resumo:
Monophasic Ba2NaNb5O15 was crystallized at nanometer scale (12-36 nm) in 2BaO-0.5Na(2)O-2.5Nb(2)O(5)- 4.5B(2)O(3) glass system. To begin with, optically transparent glasses, in this system, were fabricated via the conventional melt. quenching technique. The amorphous and glassy characteristics of the as-quenched samples were respectively confirmed by X-ray powder diffraction and differential thermal analyses. Nearly homogeneous distribution of Ba2NaNb5O15 (BNN) nanocrystals associated with tungsten bronze structure akin to their bulk parent structure was accomplished by subjecting the as-fabricated glasses to appropriate heat-treatment temperatures. Indeed transmission electron microscopy (TEM) carried out on these samples corroborated the presence of Ba2NaNb5O15 nanocrystals dispersed in a continuous glass matrix. The as-quenched glasses were similar to 75% transparent in the visible range of the electromagnetic spectrum. The optical band gap and refractive index were found to have crystallite size (at nanoscale) dependence. The optical band gap increased with the decrease in crystallite size. The refractive indices of the glass nanocrystal composites as determined by Brewster angle method were rationalized using different empirical models. The refractive index dispersion with wavelength of light was analyzed on the basis of the Sellmeier relations. At room temperature under UV excitation (355 nm) these glass nanocrystal composites displayed violet-blue emission which was ascribed to the defects states.
Resumo:
Pure cubic zirconia (ZrO2) nanopowder is prepared for the first time by simple low temperature solution combustion method without calcination. The product is characterized by Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infra Red spectroscopy (FTIR) and Ultraviolet-Visible spectroscopy (UV-Vis). The PXRD showed the formation of pure stable cubic ZrO2 nanopowders with average crystallite size ranging from 6 to 12 nm. The lattice parameters were calculated from Rietveld refinement method. SEM micrograph shows fluffy, mesoporous, agglomerated particles with large number of voids. TEM micrograph shows honey comb like arrangement of particles with particle size similar to 10 nm. The PL emission spectrum excited at 210 nm and 240 nm consists of intense bands centered at similar to 365 and similar to 390 nm. Both the samples show shoulder peak at 420 nm, along with four weak emission bands at similar to 484, similar to 528, similar to 614 and similar to 726 nm. TL studies were carried out pre-irradiating samples with gamma-rays ranging from 1 to 5 KGy at room temperature. A well resolved glow peak at 377 degrees C is recorded which can be ascribed to deep traps. With increase in gamma radiation there is linear increase in TL intensity which shows the possible use of ZrO2 as dosimetric material. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Cobalt ferrite (CoFe2O4) is an engineering material which is used for applications such as magnetic cores, magnetic switches, hyperthermia based tumor treatment, and as contrast agents for magnetic resonance imaging. Utility of ferrites nanoparticles hinges on its size, dispersibility in solutions, and synthetic control over its coercivity. In this work, we establish correlations between room temperature co-precipitation conditions, and these crucial materials parameters. Furthermore, post-synthesis annealing conditions are correlated with morphology, changes in crystal structure and magnetic properties. We disclose the synthesis and process conditions helpful in obtaining easily sinterable CoFe2O4 nanoparticles with coercive magnetic flux density (H-c) in the range 5.5-31.9 kA/m and M-s in the range 47.9-84.9 A.m(2)Kg(-1). At a grain size of similar to 54 +/- 2 nm (corresponding to 1073 K sintering temperature), multi-domain behavior sets in, which is indicated by a decrease in H-c. In addition, we observe an increase in lattice constant with respect to grain size, which is the inverse of what is expected of in ferrites. Our results suggest that oxygen deficiency plays a crucial role in explaining this inverse trend. We expect the method disclosed here to be a viable and scalable alternative to thermal decomposition based CoFe2O4 synthesis. The magnetic trends reported will aid in the optimization of functional CoFe2O4 nanoparticles
Resumo:
We present a comparative study of the temperature dependent magnetic properties and electron paramagnetic resonance parameters of nano and bulk samples of Bi0.2Sr0.8MnO3 (BSMO). Bulk BSMO is known to have a high T-N similar to 260K and robust charge ordering (T-CO similar to 360 K). We confirm that the bulk sample shows an antiferromagnetic transition around similar to 260K and a spin-glass transition similar to 40 K. For the nano sample, we see a clear ferromagnetic transition at around similar to 120 K. We conclude that spin glass state, which is present due to the co-existence of antiferromagnetic and ferromagnetic states in the bulk sample, is suppressed in the nano sample and ferromagnetism is induced instead. (C) 2014 AIP Publishing LLC.
Resumo:
Scaling of pressure spectrum in zero-pressure-gradient turbulent boundary layers is discussed. Spatial DNS data of boundary layer at one time instant (Re-theta = 4500) are used for the analysis. It is observed that in the outer regions the pressure spectra tends towards the -7/3 law predicted by Kolmogorov's theory of small-scale turbulence. The slope in the pressure spectra varies from -1 close to the wall to a value close to -7/3 in the outer region. The streamwise velocity spectra also show a -5/3 trend in the outer region of the flow. The exercise carried out to study the amplitude modulation effect of the large scales on the smaller ones in the near-wall region reveals a strong modulation effect for the streamwise velocity, but not for the pressure fluctuations. The skewness of the pressure follows the same trend as the amplitude modulation coefficient, as is the case for the velocity. In the inner region, pressure spectra were seen to collapse better when normalized with the local Reynolds stress (-(u'v') over bar) than when scaled with the local turbulent kinetic energy (q(2) = (u'(2)) over bar + (v'(2)) over bar + (w'(2)) over bar)
Resumo:
Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x(TBA) approximate to 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x(TBA) approximate to 0.05. We note that ``islands'' of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x(TBA) approximate to 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level. (C) 2014 AIP Publishing LLC.
Resumo:
Voltage Source Inverter (VSI) fed induction motors are widely used in variable speed applications. For inverters using fixed switching frequency PWM, the output harmonic spectra are located at a few discrete frequencies. The ac motordrives powered by these inverters cause acoustic noise. This paper proposes a new variable switching frequency pwm technique and compares its performance with constant switching frequency pwm technique. It is shown that the proposed technique leads to spread spectra of voltages and currents. Also this technique ensures that no lower order harmonics are present and the current THD is comparable to that of fixed switching frequency PWM and is even better for higher modulation indices.
Resumo:
Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of Delta E-t approximate to 0.3 eV and with a density of state distribution as D-t(Et-j) = D-t0 exp(-Delta E-t/kT) with D-t0 = 5.02 x 10(11) cm(-2) eV(-1). Such a model is useful for developing simulation tools for circuit design. (C) 2014 AIP Publishing LLC.