433 resultados para single parent
Resumo:
Ferroelectric superlattice structures consisting of alternating layers of BaTiO3 and SrTiO3 with variable interlayer thickness were grown on Pt (111)/TiO2/SiO2/Si (100) substrates by pulsed laser deposition. The presence of superlattice reflections in the x-ray diffraction pattern clearly showed the superlattice behavior of the fabricated structures over a range of 6.4–20 nm individual layer thicknesses. Depth profile conducted by secondary ion mass spectrometry analysis showed a periodic concentration of Ba and Sr throughout the film. Polarization hysteresis and the capacitance-voltage characteristics of these films show clear size dependent ferroelectric characteristics. The spontaneous (Ps) and remnant (Pr) polarizations increase gradually with decreasing periodicity, reach a maximum at a finite thickness and then decrease. The competition between the size effect and long-range ferroelectric interaction is suggested as a possible reason for this phenomenon. The temperature dependence of Ps and Pr shows a single ferroelectric phase transition, and the Curie temperature is estimated to be about 316 K. The curve shows that the ferroelectric superlattice tends to form an artificial material, responding as a single structure with an averaged behavior of both the parent systems.
Resumo:
The subject of transients in polyphase induction motors and synchronous machines has been studied in very great detail by several investigators, but no published literature exists dealing exclusively with the analysis of the problem of transients in single-phase induction motors. This particular problem has been studied in this paper by applying the Laplace transform. The results of actual computation of the currents and developed electrical torque are compared with the data obtained by setting up the integro-differential equations of the machine on an electronic differential analyzer. It is shown that if the motor is switched on to the supply when the potential passes through its zero value, there is a pulsating fundamental frequency torque superimposed on the average steady-state unidirectional torque. If, on the other hand, the switch is closed when the applied potential passes through its maximum value, the developed electrical torque settles down to its final steady-state value during the first cycle of the supply voltage.
Resumo:
a complete and accurate analysis is provided for the solution of single-phase induction motor performance characteristics based on a paper by F.W. Suhr ["SYMMETRICAL COMPONENTS AS APPLIED TO THE SINGLE PHASE INDUCTION MOTOR," Electrical Engineering (AlEE Transactions), volume 64, September 1945, pages 651-66].
Resumo:
Static distance relays employing semiconductor devices as their active elements offer many advantages over the conventional electromagnetic and rectifier relays. The paper describes single-system and three-system static distance relays, which depend for their operation on the instantaneous-comparison or `block-spike¿ scheme. Design principles and typical discriminating and logic circuits are described for the new relaying equipment. The relaying circuitry has been devised for obtaining uniform performance on all kinds of faults, by the use of two phase detectors¿one for multiphase faults and one for earth faults. The phase detector for multiphase faults provides an improved polar characteristic in the complex-impedance plane, which fits only around the fault area of a transmission line. The other features of the relay are: reliable pickup for close-in faults, least susceptibility to maloperation under power-swing conditions, and reduction in cost and panel space required. The operating characteristics of the relays, as expressed by accuracy/range charts, are also presented.
Resumo:
High frequency PWM inverters produce an output voltage spectrum at the fundamental reference frequency and around the switching frequency. Thus ideally PWM inverters do not introduce any significant lower order harmonics. However, in real systems, due to dead-time effect, device drops and other non-idealities lower order harmonics are present. In order to attenuate these lower order harmonics and hence to improve the quality of output current, this paper presents an \emph{adaptive harmonic elimination technique}. This technique uses an adaptive filter to estimate a particular harmonic that is to be attenuated and generates a voltage reference which will be added to the voltage reference produced by the current control loop of the inverter. This would have an effect of cancelling the voltage that was producing the particular harmonic. The effectiveness and the limitations of the technique are verified experimentally in a single phase PWM inverter in stand-alone as well as g rid interactive modes of operation.
Resumo:
Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (m beta 1, m beta 1'beta 2, m beta 1-beta 5, m beta 1-beta 6 and m beta 4-beta 5) by transplanting beta 1, beta 1'beta 2, beta 1-beta 5, beta 1-beta 6 and beta 4-beta 5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, m beta 1'beta 2(ESWR) SSB was generated by mutating the MtuSSB specific `PRIY' sequence in the beta 2 strand of m beta 1'beta 2 SSB to EcoSSB specific `ESWR' sequence. Biochemical characterization revealed that except for m beta 1 SSB, all chimeras and a control construct lacking the C-terminal domain (Delta C SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, m beta 1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that m beta 1-beta 6, MtuSSB, m beta 1'beta 2 and m beta 1-beta 5 SSBs complemented E. coli Delta ssb in a dose dependent manner. Complementation by the m beta 1-beta 5 SSB was poor. In contrast, m beta 1'beta 2(ESWR) SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.
Resumo:
Taking polycrystalline cadmium as an example and by utilizing the predicted temperature or strain rate-dependence of the (Hall-Petch) stress-grain size parameters, a reasonably quantitative explanation is given for the grain size dependence of apparent activation volume measurements. The explanation involves the theoretical relation of these measurements to single-crystal measurements.
Resumo:
Commercial purity (99.8%) magnesium single crystals were subjected to plane strain compression (PSC) along the c-axis at 200 and 370 degrees C and a constant strain rate of 10(-3) s(-1). Extension was confined to the < 1 1 (2) over bar 0 > direction and the specimens were strained up to a logarithmic true strain of -1. The initial rapid increase in flow stress was followed by significant work softening at different stresses and comparable strains of about -0.05 related to macroscopic twinning events. The microstructure of the specimen after PSC at 200 degrees C was characterized by a high density of {1 0 (1) over bar 1} and {1 0 (1) over bar 3} compression twins, some of which were recrystallized. After PSC at 370 degrees C, completely recrystallized twin bands were the major feature of the observed microstructure. All new grains in these bands retained the same c-axis orientation of their compression twin hosts. The basal plane in these grains was randomly rotated around the c-axis, forming a fiber texture component. The obtained results are discussed with respect to the mechanism of recrystallization, the specific character of the boundaries between new grains and the initial matrix, and the importance of the dynamically recrystallized bands for strain accommodation in these deformed magnesium single crystals. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
It is well known that enantiomers cannot be distinguished by NMR spectroscopy unless diastereomorphic interactions are imposed. Several chiral aligning media have therefore been reported for their visualization, although extensive studies are carried out using the liquid crystal made of polypeptide poly-γ-benzyl-L-glutamate (PBLG) in organic solvent. In PBLG medium the spin systems are weakly coupled and the first order analyses of the spectra are generally possible. But due to large number of pair wise interactions of nuclear spins resulting in many degenerate transitions the 1H NMR spectra are not only complex but also broad and featureless, in addition to an indistinguishable overlap of the spectra of enantiomers. This enormous loss of resolution severely hinders the analyses of proton spectra, even for spin systems with 5–6 interacting protons, thereby restricting itsroutine application. In this review we discuss our recently developed several one and multidimensional NMR experiments to circumvent these difficulties taking specific examples of the molecules containing a single chiral centre.
Resumo:
The transmission loss (TL) performance of spherical chambers having single inlet and multiple outlet is obtained analytically through modal expansion of acoustic field inside the spherical cavity in terms of the spherical Bessel functions and Legendre polynomials. The uniform piston driven model based upon the impedance [Z] matrix is used to characterize the multi-port spherical chamber. It is shown analytically that the [Z] parameters are independent of the azimuthal angle (phi) due to the axisymmetric shape of the sphere; rather, they depend only upon the polar angle (theta) and radius of the chamber R(0). Thus, the effects of relative polar angular location of the ports and number of outlet ports are investigated. The analytical results are shown to be in good agreement with the 3D FEA results, thereby validating the procedure suggested in this work.
Resumo:
Solubilization of single walled carbon nanotubes (SWNTs) in aqueous milieu by self assembly of bivalent glycolipids is described. Thorough analysis of the resulting composites involving Vis/near-IR spectroscopy, surface plasmon resonance, confocal Raman and atomic force microscopy reveals that glycolipid-coated SWNTs possess specific molecular recognition properties towards lectins.
Resumo:
This paper reports single pulse shock tube and ab initio studies on thermal decomposition of 2-fluoro and 2-chloroethanol at T=1000–1200 K. Both molecules have HX (X = F/Cl) and H2O molecular elimination channels. The CH3CHO formed by HX elimination is chemically active and undergoes secondary decomposition resulting in the formation of CH4, C2H6, and C2H4. A detailed kinetic simulation indicates that the formation of C2H4 could not be quantitatively explained as arising exclusively from secondary CH3CHO decomposition. Contributions from primary radical processes need to be considered to explain C2H4 quantitatively. Ab initio calculations on HX and H2O elimination reactions from the haloethanols at HF, MP2, and DFT levels with various basis sets up to 6/311++G**are reported. It is pointed out that due to strong correlations between A and Eα, comparison of these two parameters between experimental and theoretical results could be misleading.
Resumo:
As-prepared single-walled carbon nanotubes (SWNTs) are generally mixtures of semiconducting and metallic species, the proportion of the former being around 67%. Since most applications of SWNTs are best served by semiconducting or metallic nanotubes, rather than by mixtures of the two, methods which would directly yield semiconducting and metallic SWNTs in pure form are desirable. In this article, we present the available methods for the direct synthesis of such SWNTs along with the methods available to separate semiconducting and metallic SWNTs from mixtures. We also discuss the synthesis of Y-junction carbon nanotubes.
Resumo:
In this paper we report resonance Raman scattering from graphite covering excitation energies in the range 2.4 eV to 6 eV. The Raman excitation profile shows a maximum at 4.94 eV (lambda = 251nm) for the G - band (1582 cm(-1)). The D-band at similar to 1350 cm(-1), attributed to disorder activated Raman scattering, does not show up in Raman spectra recorded with excitation wavelengths smaller than 257.3 nm, revealing that the resonance enhancements of the G and D-modes are widely different. Earlier Raman measurements in carbon materials have also revealed a very large and unusual dependence of the D - mode frequency on excitation laser wavelength. This phenomenon is also observed in carbon nanotubes. In this paper we show for the first time that the above unusual dependence arises from the disorder - induced double resonance mechanism.